目 次

1. はじめに ・・・・ 1

2. 観測とデータ公開 ・・・・ 2
 2.1 観測期間 ・・・・ 2
 2.2 レーダ設置場所と観測範囲 ・・・・ 2
 2.3 観測体制 ・・・・・ 5
 2.4 観測内容
 a. レーダアングラスキャンモードと取得データ ・・・・ 5
 b. 取得されたレーダデータの転送と収録 ・・・・ 7
 c. 三宅島ゼンの噴火の目視観測、写真撮影、ビデオ撮影 ・・・・ 7
 2.5 観測データの公開
 a. Web 上でのレーダ画像情報の公開 ・・・・ 9
 b. セキュリティ対策 ・・・・ 9

3. 観測結果 ・・・・ 10
 3.1 概要 ・・・・ 10
 3.2 事例 ・・・・・ 10
 3.3 観測期間中の全てのレーダ画像 ・・・・・ 12
 3.4 ホームページへのアクセス状況 ・・・・・ 12

4. 参考資料 ・・・・・ 13
 4.1 収録データ一覧
 a. レーダデータ DAT テープのリスト（VOL 名と収録内容） ・・・・・ 13
 b. レーダ静止画像収録 MO のリスト（VOL 名と収録日時） ・・・・・ 13
 c. デジタルカメラで撮影された三宅島の写真 ・・・・・ 14
 d. 特徴的なレーダエコーが観測されたときの地上天気図 ・・・・・ 14
 e. 特徴的なレーダエコーが観測されたときのゾンデ観測データ ・・・・・ 14
 f. 特徴的なレーダエコーが観測されたときの GMS 画像 ・・・・・ 14
 g. 三宅島ゼンの噴火高度の記録 ・・・・・ 14
 4.2 機動観測のための参考資料(2000.11 作成、2001.12 一部修正)
 a. 必要電源、臨時电源、データ転送用専用回線についてのメモ ・・・・・ 15
 b. マルチパラメータレーダの停止・起動方法 ・・・・・ 15
 c. MP レーダ DAT 交換方法 ・・・・・ 17
 d. CCT カメラの運用・設定・作業について ・・・・・ 17
 e. 式根島観測補助作業内容 ・・・・・ 18

謝 辞 ・・・・・ 20
要 旨 ・・・・・ 21
List of Tables and Figures
(Figures with the asterisk * are not shown in this document but contained in the CD-ROM Miyake2000(Main))

Table 2.1 Radar observation schedule.
Table 2.2 Participants and contents of their work.
Table 2.3 Antenna scan modes and measured data.
Table 2.4 Main specifications of the monitoring camera for volcanic activities of the Miyake Island.
Table 2.5 List of radar images opened to the public via NIED web servers.

Table 3.1 List of radar echoes over the Miyake Island.
Table 3.2 All radar data images during the observation period.

Table 4.1 List of radar data recorded on DAT tape.
Table 4.2 List of radar images stored on magneto optical (MO) disks.

Fig. 2.1 The location of MP radar in the Shikine Island.
Fig. 2.2 Multi-parameter radar in the Shikine Island.
Fig. 2.3 Monitoring cameras of the MP radar.
Fig. 2.4 Radar location and observation area.
Fig. 2.5 Relationship between beam height and range.
Fig. 2.6 Flow diagram of radar data.
Fig. 2.7 System diagram of the monitoring camera for volcanic activities.
Fig. 3.1* Case 1 (2010-2040 LST, 26 Sep.).
Fig. 3.2* Case 2 (0900-1155 LST, 30 Sep.).
Fig. 3.3* Case 3 (2215-2355 LST, 01 Oct.).
Fig. 3.4* Case 4 (0755-0825 LST, 05 Oct.).
Fig. 3.5* Case 5 (1600-1655 LST, 09 Oct.).
Fig. 3.6* Case 6 (0700-0955 LST, 10 Oct.).
Fig. 3.7* Case 7 (0500-0855 LST, 13 Oct.).
Fig. 3.8* Case 8 (1150-1405 LST, 13 Oct.).
Fig. 3.9* Case 9 (0405-0605 LST, 16 Oct.).
Fig. 3.10* Case 10 (1305-1525 LST, 16 Oct.).
Fig. 3.11* Case 11 (1535-1730 LST, 16 Oct.).
Fig. 3.12* Case 12 (1810-1905 LST, 16 Oct.).
Fig. 3.13* Case 13 (2005-2050 LST, 16 Oct.).
Fig. 3.14* Case 14 (2240-2320 LST, 16 Oct.).
Fig. 3.15* Case 15 (0010-0415 LST, 17 Oct.).
Fig. 3.16* Case 16 (0335-0435 LST, 17 Oct.).
Fig. 3.17* Case 17 (0530-0830 LST, 17 Oct.).
Fig. 3.18* Case 18 (1030-1115 LST, 17 Oct.).
Fig. 3.19* Case 19 (2110-2140 LST, 17 Oct.).
Fig. 3.20* Case 20 (2340-1030-0035 LST, 28 Oct.).
Fig. 3.21* Case 21 (1100-1840 LST, 01 Nov.).
Fig. 3.22* Case 22 (0630-0955 LST, 06 Nov.).
図 3.23* 事例 23（11月 07日 0835-0855 LST）
Fig. 3.23* Case 23 (0835-0855 LST, 07 Nov.).
図 3.24* 事例 24（11月 09日 0120-0340 LST）
Fig. 3.24* Case 24 (0120-0340 LST, 09 Nov.).
図 3.25* 事例 25（11月 09日 1445-1525 LST）
Fig. 3.25* Case 25 (1445-1525 LST, 09 Nov.).
図 3.26 防災科学研究技術研究所内に用意されたホームページ用サーバ（WITSS）への 1 日間のアクセス数の推移
Fig. 3.26 History of daily access numbers to NIED home server (WITSS).
図 3.27 防災科学研究技術研究所内に用意されたホームページ用サーバ（WITSS）への 1 日間のアクセスサイト数の推移
Fig. 3.27 History of daily numbers of sites accessed to NIED home server (WITSS).
付図 A.1*-A.10* 三宅島雄山の噴煙高度の時間変化（気象庁提供）
Fig. A.1*-A.10* Time change of ash clouds from Mt. Oyama in Miyake Island (JMA).

別添CD-ROM Miyake2000の内容

添付 CD-ROM 内に本文と、観測期間中の全てのレーダ画像（レーダ反射因子とドップラー速度）がまとめられています。画像の種類は高度 1km の CAPPI 画像（レンジ 10km、レンジ 30km）及び三宅島雄山方向の RHI 画像です。いずれの画像も1時間のアニメーションとして整理されています。以下のいずれかをクリックしてください。

本文（PDF形式）
レーダ画像選択画面

Contents of attached CD-ROM

The attached CD-ROM contains the main documents and all radar images (radar reflectivity factor and Doppler velocity) during the observation period. CAPPI (height: 1 km, area: 10km×10km and 30km×30km) images and RHI images along Miyake Island are shown by animated images of one-hour observations period. Click one of the following items.

Main documents (PDF).
Radar Image Selection Screen.
マルチパラメータレーダによる三宅島雄山の噴煙観測

真木雅之・岩波越

Multi-Parameter Radar Observations of Volcanic Ash Clouds from Mt. Oyama in Miyake Island

Masayuki MAKI and Koyuru IWANAMI

National Research Institute for Earth Science and Disaster Prevention, Japan

Abstract

Outline and preliminary results of radar observations of volcanic activities of Mt. Oyama, the Miyake Island, Japan are presented. The observations were carried out using the X-band multi-parameter radar from 25 September to 20 November 2000. The main purposes of the observations are to detect volcanic eruptions and to provide information about spatial distribution and time evolution of volcanic ash. Although noticeable eruptions did not occur during the observation periods, the radar sometimes detected echoes over Mt. Oyama. Time sequences of these radar echoes are saved on the CD-ROM.

Keyword : Multi-parameter radar, Polarimetric radar, Volcanic eruption, Volcanic ash, Radar observation

1. はじめに

三宅島は東京の南約180kmに位置する直径約9kmのほぼ円形の火山島である。三宅島は「伊豆小笠原弧」と呼ばれる火山島群の一部で、これまでも多くの噴火を繰り返してきており、最近では1940年、1962年、1983年の噴火があるが、今回の噴火は最初、2000年7月8日に三宅島雄山（814m）を使った噴火が観測されたその後、何回かの噴火が繰り返し、8月28日には2000年の噴火のなかでも最大規模の噴火がおき、噴煙は15,000mの高度に達した。このとき、島内や広い範囲で、火山灰のほか、火山津や火山弾も観測された。これに次ぐ規模の噴火が8月29日に起こり、低気圧の活動が島北部斜面で観測された。これを機に9月2日には約38,000の全島住民に避難指示が出され、同月4日には全島住民の避難が完了した。気象庁によれば、10月以降は、噴火が続続的に繰り出されているものの、顕著な噴火は発生していない。降灰についても火口近傍を除きほとんど認められなくなっ

* 防災科学技術研究所 防災基盤科学技术研究部門
2. 観測とデータ公開
2.1 観測時間
レーダの設置場所調査、観測打ち合わせ、設置作業、撤収作業なども併せて詳細な日程を表2.1に示す。レーダの設置場所の選定調査は2000年8月29日～31日に沖津島、新島、松根島の3島で実施した。レーダ観測の期間は2000年9月25日～2000年11月20日である。

2.2 レーダ設置場所と観測範囲
レーダは東京都新島村永根島に当たる工事（小の口ふれあい広場）内で三宅島を眺められる場所に設置した。図2.1に永根島の地形図と公園（小の口ふれあい広場）の場所を、図2.2にレーダ設置点の写真を示した。日中の三宅島の日視観測。

24時間体制でのレーダエコーの観測のためにレーダ車に隣接して観測小屋も設置した。これは一般の人が利用する場所なので、レーダ観測をおこなうに当たりは安全管理に配慮する必要があった。このために、レーダが Marlのレンタルで開うとともに、監視カメラを設置してレーダ付近に人が居ないことを確認しながら観測をおこなった（図2.3）。

図2.4にレーダ設置点とレーダ観測範囲を示す。本観測では半径80kmで方位角が90°から190°のセクター内を観測範囲とした。一般にレーダ観測では360°全ての方位角で観測できることが望ましいが、今回の観測では観測範囲が限定された。その理由は、前述したようにレーダの設置場所が島の中により制限されたために、取壊が限られたこと。さらに、展望の良い地点が見つかっても、火災対策を考慮するように発式の地震のためにその場所が地割れや崖崩れをおこして利用できなかったということがあげられる。しかしながら、今回の観測の目的である三宅島過所の監視監視のためには支障ない。データの画像化は図の60km×60kmと20km×20kmの矩形エリアで、webサーバ上で公開したレーダ画像の領域に対応する。

<table>
<thead>
<tr>
<th>表2.1</th>
<th>観測日程</th>
</tr>
</thead>
<tbody>
<tr>
<td>月</td>
<td>日</td>
</tr>
<tr>
<td>8月29日(火)</td>
<td>部門設置場所調査(沖津島、式根島、新島)</td>
</tr>
<tr>
<td>8月31日(木)</td>
<td></td>
</tr>
<tr>
<td>9月14日(木)</td>
<td>観測打ち合わせ</td>
</tr>
<tr>
<td>9月17日(日)</td>
<td>観測小屋</td>
</tr>
<tr>
<td>9月18日(月)</td>
<td>電話工事(128K専用回線)</td>
</tr>
<tr>
<td></td>
<td>レーダ、機材搬入</td>
</tr>
<tr>
<td>9月19日(火)</td>
<td>ISDN回線接続(NTT)</td>
</tr>
<tr>
<td></td>
<td>レーダ設置点(内)</td>
</tr>
<tr>
<td>9月20日(水)</td>
<td>NIEDネットワークアタック試験(~22日)</td>
</tr>
<tr>
<td></td>
<td>ISDN回線工事(風洞棟)</td>
</tr>
<tr>
<td>9月21日(木)</td>
<td>M上レーダ実験運転</td>
</tr>
<tr>
<td>9月22日(金)</td>
<td>M上レーダ遠隔操作試験</td>
</tr>
<tr>
<td></td>
<td>事務機器搬入(風洞棟)</td>
</tr>
<tr>
<td>9月23日(土)</td>
<td>M上レーダデータ伝送試験</td>
</tr>
<tr>
<td>9月24日(日)</td>
<td>公開ホームページ(WITSS)の確認</td>
</tr>
<tr>
<td>9月25日(月)</td>
<td>HP・WITSSの公開開始(内外ホームページ)</td>
</tr>
<tr>
<td>9月26日(火)</td>
<td>HP・bosi-radarの試験運用(10月～11月)</td>
</tr>
<tr>
<td>9月27日(水)</td>
<td>噴煙監視カメラ設置</td>
</tr>
<tr>
<td>9月29日(金)</td>
<td>M上レーダ遠隔操作試験</td>
</tr>
<tr>
<td>11月10日(金)</td>
<td>HP・bosi-radarの公開(三宅島)</td>
</tr>
<tr>
<td>11月20日(火)</td>
<td>HP・WITSSの公開終了</td>
</tr>
<tr>
<td>11月22日(木)</td>
<td></td>
</tr>
<tr>
<td>11月23日(金)</td>
<td>M上レーダの公開(三宅島)</td>
</tr>
<tr>
<td>11月24日(日)</td>
<td>M上レーダ設置作業</td>
</tr>
<tr>
<td>11月27日(月)</td>
<td>M上レーダ洗浄作業</td>
</tr>
</tbody>
</table>
Fig. 2.1 The location of MP radar in the Shikine Island.

Fig. 2.2 Multi-parameter radar in the Shikine Island.
Fig. 2.3 Monitoring cameras of the MP radar.

Fig. 2.4 Radar location and observation area. Two rectangular areas show areas of radar images open to the public via NIED web servers.
2.3 観測体制
防災科学研究研究所以外で観測にかかわった機関を表2.2に示す。東京都の新島村役場、神津島村役場、大島支庁神津島出張所にはレーダ設置場所の調査や設置場所の使用にあたって便宜をはかっていただいた。三菱電機（株）、三菱日立システムズにはレーダの設置と調整を委託した。三菱スペースソフトウェア（株）と（株）エナジーシアリングにはweb上でのレーダデータ公開の支援作業を委託した。

（財）日本気象協会には、設置撤収、レーダ観測のための電源手配や専用回線の手配などレーダ観測全般について委託した。（有）フォルテには噴煙監視カメラおよび車両監視カメラの製作を委託した。デジタルウェザープラットフォーム（株）には大島レーダデータの提供を受けた。緊急の委託にもかかわらず、いずれの機関も快く作業を担当していただいた。

2.4 観測内容
a. レーダアンテナスキャンモードと取得データ
MPレーダ観測は24時間連続で行われた。観測小屋には観測員が常駐し、エコー状況を定期的に記録した。噴火がある場合やレーダシステムになんらかの異常が認められた場合には直ちにNIED担当者と連絡が入る体制をとった。

表2.3にレーダアンテナのスキャンモードを示す。1サイクルの観測は1.2°から30.3°までの計13の高度角のセクタースキャンと三宅島周辺の方向(134.5°)のRHIスキャンからなり、これらの観測に要する時間は約5分である。セクタースキャンは高度別の噴煙の水平分布および任意の方向の鉛直分布を求めるために設定された。各セクタースキャンのビームのレンジと高度の関係を図2.4に示す。高度0km〜4km、4km〜10km、高度10km以上の高度分解能は三宅島上空ではそれぞれ約1km、2km、3kmである。セクタースキャンから任意の方向の鉛直断面を求めることができる利点はあるが、空間分解能の点や全てのセクタースキャンが終了しないと断面図をもとめられないといった制約がある。これに対しRHIスキャンではより詳細な空間分解能で瞬時的な鉛直断面を求めることができる。RHIスキャンの場合の空間分解能はレンジ方向の分解能とビーム幅から求め、三宅島近辺では水平分解能が約100m、鉛直分解能が約1kmである。したがって大規模な噴火があるような場合に有効である。セクタースキャンおよびRHIスキャンで取得されるデータはレーダ反射因子、ドップラー速度、偏波パラメータ（レーダ反射因子差ZDR、単位距離当たりの偏波間位相差KDP、co-polar相関係数ρHV）である。

本報告では、得られたレーダデータのうちレーダ反射因子とドップラー速度のみについて述べる。偏波パラメータは火山噴出物の検出に有効であると考えられるが、その解析については今後の課題である。

<table>
<thead>
<tr>
<th>参 加 機 関</th>
<th>担 当 作 業</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京都新島村役場</td>
<td>レーダ設置場所の提供</td>
</tr>
<tr>
<td>東京都神津島村役場、東京都大島支庁神津島出張所</td>
<td>レーダ設置場所調査</td>
</tr>
<tr>
<td>三菱電機（株）（MEICO）</td>
<td>レーダ設置調整、実験、運用支援</td>
</tr>
<tr>
<td>三菱ロジスティック</td>
<td>レーダ送信</td>
</tr>
<tr>
<td>三菱スペースソフトウェア（株）（MSS）</td>
<td>データ公開支援</td>
</tr>
<tr>
<td>S I G M E T</td>
<td>レーダ運用支援</td>
</tr>
<tr>
<td>（財）日本気象協会（JWA）</td>
<td>設置撤収、噴霧観測、安全管理</td>
</tr>
<tr>
<td>（株）エナジーシアリング（ESCOT）</td>
<td>ホームページ作成、解析補助</td>
</tr>
<tr>
<td>（有）フォルテ</td>
<td>噴霧監視CCTカメラシステム</td>
</tr>
<tr>
<td>デジタルウェザープラットフォーム（株）（DWP）</td>
<td>共同研究（大島レーダ）</td>
</tr>
</tbody>
</table>

Table 2.2 プロジェクトに関わった機関と担当作業内容
Table 2.2 Participants and contents of their work.

— 5 —
表2.3 アンテナスキャンモードと取得データ

Table 2.3 Antenna scan modes and measured data.

<table>
<thead>
<tr>
<th>スキャンモード</th>
<th>取得データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Scan (13tilts)</td>
<td>EL=1.2, 2.3, 3.4, 4.6, 5.7, 7.4, 9.6, 11.9, 14.4, 17.8, 21.2, 25.4, 30.3° (AZ=90° 〜 180°)</td>
</tr>
</tbody>
</table>

RHI Scan
AZ=134.5° (EL=0〜90°)

Fig. 2.5 Relationship between beam height and range. Numbers in the Figure show elevation angle of antenna.
b. 取得されたレーダデータの転送と収録

レーダデータの流れを図2.6に示した。式根島レーダサイトのワークステーション (MPR_DPX) には MIYAKE という名前をつけられた TASK SCHEDULER が設定されている。TASK の種類は 1) MIYAKE_CAPPI と 2) MIYAKE_RHI の 2 種類で、前者は 13 ステップのセクタースキャンからなるボリュームスキャンである。後者は式根島側の方向の RHI スキャンである。各スキャンで測定された RAW データ (MIYAKE_VOL, MIYAKE_RHI) はワークステーションに接続されている DAT ドライプに収録される。式根島レーダサイトでは MIYAKE_VOL と MIYAKE_RHI という RAW データのプロダクトしか作成されないが、PPI レーダ画像は REAL TIME DISPLAY 上で見ることができる。

レーダサイトで得られた RAW データ (MIYAKE_VOL, MIYAKE_RHI) はつば NIED 研究室のワークステーション (MPR_ANA) に 128KBPS 専用回線を通じて転送される。送られた RAW データは MPR_ANA に接続されている DAT ドライプにも収録される。さらに、MPR_ANA では web サーバ上で公開するための様々な画像プロダクトが作成される。画像プロダクトの詳細は次節に記述した。

c. 三宅島側の付近の時計回りの観測、写真撮影、ビデオ撮影

レーダ観測と同時に目視、写真撮影、ビデオカメラによる三宅島付近の観測をおこなった。噴煙の目視観測は日中を原則とし、顕著な噴火活動の変化が認められる場合には夜間にもおこなうこととした。三宅島の状況は原則として 1 時間毎にデジタルカメラで撮影し、画像データを MO 等の外部記録媒体へコピーし整理した。デジタルカメラで撮影した画像は日中 1 時間毎に専用回線によりつば NIED の第 1 web サーバへ送られ、ホームページ上で公開された。

ビデオカメラによる三宅島の監視は自動でおこなわれた。KVM 可能な CCTV カメラはドーム状の透明カバーの中に納められており、その角度の変更のリモコン操作が観測小屋の中から可能である。カメラの画像は 2 秒間隔でデジタルディスクレコーダに記録された。レコーダには約 90GB のハードディスク用意されており、1 日ごとの連続収録が可能である。この監視カメラシステムの特徴の一つに遠隔操作ができることがあげられる。表2.4に監視カメラの主な仕様を、図2.7に監視カメラの系統図を示す。64k の電話回線を使つてつば NIED 研究室からも画像の取り込みやカメラの撮影方向、撮影間隔などを設定することができます。

![図2.6 レーダデータの流れ](Fig.2.6 Flow diagram of radar data.)
<table>
<thead>
<tr>
<th>品名</th>
<th>数量</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIT-755 回転式複合一体型カメラ</td>
<td>1台</td>
<td>映像素子(1/4 インチカーテン転送方式 CCD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>レンズ (4.1～61.5mm 15 倍ズーム)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>解像度 (水平：480 本以上 垂直：350 本以上)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最低照度 (2 1/2 F1.85 1/60 秒)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最大旋回角度 (PAN360° エンドレス, TILT0～90°)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電源 (AC100V±10% 50/60Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>質量 (約 2kg, 専用電源分離時)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外形寸法 (φ130×186(H)mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>屋外用ドームカメラケース</td>
</tr>
<tr>
<td>CIT-741 屋外接付型カラーカメラ</td>
<td>3台</td>
<td>映像素子(1/3 インチカーテン転送方式 CCD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>レンズ (焦点距離：2.2mm 画角：水平 120° 垂直 90°)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>解像度 (水平：470 本 垂直：350 本)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最低照度 (2.2mm F1.85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>使用温度 (-15～+50°C, 但し結露しないこと)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電源 (DC カラーテープラマより供)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>質量 (約 620g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外形寸法 (130(W)×60(H)×56(D)mm)</td>
</tr>
<tr>
<td>X-9600CCD カメラコントローラユニット</td>
<td>1台</td>
<td>信号接続台数 (4 台)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>映像切替 (自動/手動キング 切替時間 1～60 秒)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>信号入力 (VTR 4台, 複合一体型カラーカメラ 4台)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>映像入力 (タイムラップス VTR 1, 緩続接続 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>映像出力 (映像: 4 画面×2 カラーテープラマ×4 タイムラップス 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>自動復帰機能 (有り)</td>
</tr>
<tr>
<td>DX-TL150 デジタルディスクレコーダ</td>
<td>1台</td>
<td>主記憶メディア (10GBHDD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>補助記憶メディア (30GBHDD×3 台, MO×1 台)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>信号方式 (NTSC 方式)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ビデオ端子 (入力: 9 チャネル BNC: 1.0Vp-p, 75Ω)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ビデオ端子 (出力:モニター出力 BNC: 1.0Vp-p, 75Ω)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ビデオ端子 (出力: MOIC端子 BNC: 1.0Vp-p, 75Ω)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>解像度 (カラー/黑白 約 400 本以上)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電源 (AC100V±10% 50/60Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO 端子 (SCSI-2 ナロー50ピン, カーティング機能内蔵)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS-232C インタフェース (標準装備 D-SUB9ピン)</td>
</tr>
<tr>
<td>LC-150F1 15 インチ液晶カラーTV</td>
<td>2台</td>
<td>15 インチ</td>
</tr>
</tbody>
</table>
2.5 観測データの公開

a. Web 上でのレーダ画像情報の公開

観測レーダ画像は 2 台所の web サーバ上で公開した。第 1 は防災科学技术研究所内の M P レーダ専用に用意された web サーバである。第 1 web サイト上でのデータの一般公開は 9 月 25 日から開始し、主としてリアルタイムの画像の配信をおこなった。一般公開をおこなうにあたっては外部からの不正アクセスが懸念されるが、後述するように、これに対してはホームページの書き換えを監視するプログラムを用意するとともに、ホームページへのアクセス状況のログのチェックを定期的におこなった。

第 2 の web サーバは外部のレンタルサーバで試験運用を経て、10 月 10 日から正式に公開を開始した。第 1 web サイトと同様にこのサーバ上でもリアルタイムのレーダーエコー画像を公開した。さらに、1 時間毎のアニメーションや顕著な事例の解析結果も公開した。第 2 web サーバは防災科学技术研究所での気象レーダを用いた研究を紹介するために用意したものであり、第 1 web サイトではできなかった観測の概要や解析結果なども掲載している。第 1 , 第 2 web サーバ上で公開したレーダ画像情報の一覧を表 2.5 に示す。

b. セキュリティ対策

観測データの Web 公開に関しては、過日の科学技術庁ホームページの改ざん事件により、公開に対してのセキュリティの問題があった。研究所内の Web 公開用のサーバは Windows NT を使用しており、アタックツールを用いた研究所ネットワークのセキュリティ試験の実施結果によれば不正アクセスの可能性を否定することはできなかった。しかしながら、防災科学技术研究所の基本方針としては、三宅島火山観測に関して、セキュリティ不備による不利益よりも、公開しないことによる不利益を重視して公開に踏み切った。その際、不正アクセスに対するセキュリティ対策として可能な
表2.5 Web上で公開したレーダ画像情報

<table>
<thead>
<tr>
<th>第1 web サーバー(http://www.bosai-radar.org/)</th>
<th>第2 web サーバー（http://www.bosai-radar.org/)</th>
</tr>
</thead>
<tbody>
<tr>
<td>リアルタイムデータ(5分毎)</td>
<td>リアルタイムデータ(5分毎)</td>
</tr>
<tr>
<td>・レーダ反射因子(1,3,5kmのCAPPI)</td>
<td>・レーダ反射因子(1,3,5kmのCAPPI)</td>
</tr>
<tr>
<td>・レーダ反射因子(30℃等温線方向のRHI)</td>
<td>・レーダ反射因子(30℃等温線方向のRHI)</td>
</tr>
<tr>
<td>・ドップラー速度(1,3,5kmのCAPPI)</td>
<td>・ドップラー速度(1,3,5kmのCAPPI)</td>
</tr>
<tr>
<td>・ドップラー速度(30℃等温線方向のRHI)</td>
<td>・ドップラー速度(30℃等温線方向のRHI)</td>
</tr>
<tr>
<td>過去事情（PICT形式）</td>
<td>過去事情（PICT形式）</td>
</tr>
<tr>
<td>・リアルタイムで配信したすべての画像</td>
<td>・レーダ反射因子(1kmのCAPPI)</td>
</tr>
<tr>
<td></td>
<td>・レーダ反射因子(1kmのCAPPI)</td>
</tr>
<tr>
<td></td>
<td>・ドップラー速度(1kmのCAPPI)</td>
</tr>
<tr>
<td></td>
<td>・ドップラー速度(30℃等温線方向のRHI)</td>
</tr>
<tr>
<td>そのほかの情報</td>
<td>顕著な事例（アニメーションgif形式）</td>
</tr>
<tr>
<td>・三島遠望写真(1時間毎)</td>
<td>・レーダ反射因子(1kmのCAPPI)</td>
</tr>
<tr>
<td></td>
<td>・MPレーダに関する情報</td>
</tr>
<tr>
<td></td>
<td>・観測の概要説明</td>
</tr>
</tbody>
</table>

限りの対策をとることとした。観測期間中におこなった対策
は以下のとおりである。
（1）次の３点についての24時間監視をおこなった。
・公開ページの目視確認
・内部ファイルが改ざんされていないことの確認
・動作ログの確認
（2）メンテナンス体制
・平日の勤務時間内で状態監視をおこなった。
・平日夜間及び休日は、レーダー等を含む状態
監視を実施した。
（3）不正アクセスによるページ改ざんなどが発生した場合、
・配信システムを停止し、不正内容解析／対策後に配
信を再開する。処置レベルに関しては、事象発生時に
詳細に検討する。平日夜間及び休日は、システムの停
止までを、オンコール対応として、不正内容解析／対策
／配信再開は、平日実施とする。
・単なるシステムの異常停止の場合、可能な限り復旧
させる（原因追跡よりも復旧を優先する）。
（4）不正検査ツールの組み込み
・Webページのファイル情報を二重化し、ファイルコ
ンペアの手法により改ざんを検知する機能を組み込ん
だ。
・改ざん検知時は、配信システムを停止し、不正デー
タが外部に流れることを防止するように設定した。
・配信の再開は、上記と同じである。

3. 観測結果
3.1 概要
9月24日午前中、火山灰を伴う有形の噴火が肉眼で確認
された。この日は武雄島にレーダを設置した直後のレーダ
の調整期間中であったためにデータは収録されなかった。レー
ダ観測を開始した9月25日以降は、白色的噴火が連続的に
噴出されていたが、有形噴火はほとんど観測されなかった。
観測開始から観測終了の11月20日までの間に火口の外に噴
石を降らせるような大規模な噴火はおさなかったと考えら
れるが、小規模な噴火は何度かおきていたことが想像される。
たとえば、気象庁が11月24日に実施したヘリコプターによ
る観測によれば、島の南西部にある坪田地区付近に降灰の痕
跡が観測されている。観測手段が限られているために、正確
な情報を入手することは困難であった。

3.2 事例
今回、用いたレーダの波長では白色噴煙や粒径の小さい雲
粒や火山灰を捕らえることは困難と考えられるが、三島上
空に小さなエコーが観測されることはあった。その一覧を表
3.1にまとめた。事例は高度1kmのCAPPIレーダ反射因子
の1時間アニメーション画像から、エコーの形状や強さをも
とに主観的に選択されたものである。雄山の火山口上空に相当
表3.1 三宅島上空に現れた特徴的なレーダーエコーの一覧表

| 日時（ローカルタイム） | エコータイプ | 備考 | レーダーエコーの観測
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9月26日 20:10-20:40</td>
<td>A</td>
<td>海岸から海上へ、南東方向へ移動、53dBZ、地形性降水の可能性</td>
<td>図3.1、図3.1</td>
</tr>
<tr>
<td>2 9月30日 09:00-11:55</td>
<td>A</td>
<td>海岸から海上10km付近上空、北東方向へ、地形性降水？</td>
<td>図3.2、図3.2</td>
</tr>
<tr>
<td>3 10月1日 22:15-23:55</td>
<td>F</td>
<td>50dBZ、23時以降は御蔵島にもエコー</td>
<td>図3.3、図3.3</td>
</tr>
<tr>
<td>4 10月5日 07:55-08:25</td>
<td>F</td>
<td>小エコー、断続的に出現（3シーン）、30dBZ未満</td>
<td>図3.4、図3.4</td>
</tr>
<tr>
<td>5 10月9日 16:00-16:55</td>
<td>F</td>
<td>北東方向に伸びる強度の低いエコー、30dBZ未満</td>
<td>図3.5、図3.5</td>
</tr>
<tr>
<td>6 10月10日 07:00-09:55</td>
<td>F, M</td>
<td>7時〜8時頃は島上空に限定、8:25以降にバンド状降雨エコーと合流、37dBZ</td>
<td>図3.6、図3.6</td>
</tr>
<tr>
<td>7 10月13日 05:00-08:55</td>
<td>F, A</td>
<td>5:00〜5:15, 5:55〜6:00, 6:45〜7:35, 7:45〜8:15、島上空の南東部、南方向へ移動、37dBZ、7:30以降は御蔵島と海上にも降雨エコー</td>
<td>図3.7、図3.7</td>
</tr>
<tr>
<td>8 10月13日 11:50-14:05</td>
<td>F, A</td>
<td>12:30以降は御蔵島にも降雨エコー、島上空に出現、南へ西の海上で分散消滅、御蔵島にもエコー、強度37dBZ</td>
<td>図3.8、図3.8</td>
</tr>
<tr>
<td>9 10月16日 04:05-06:05</td>
<td>F</td>
<td>37dBZ</td>
<td>図3.9、図3.9</td>
</tr>
<tr>
<td>11 10月16日 15:35-17:30</td>
<td>F, M</td>
<td>30dBZ、降雨エコーと合流、16:45に御蔵島に降雨エコー</td>
<td>図3.11、図3.11</td>
</tr>
<tr>
<td>12 10月16日 18:10-19:05</td>
<td>F</td>
<td>分散エコー、30dBZ、御蔵島に降雨エコー</td>
<td>図3.12、図3.12</td>
</tr>
<tr>
<td>13 10月16日 20:05-20:50</td>
<td>F</td>
<td>東海岸付近で出現した短いエコーが西進し島中央部で消滅、30dBZ</td>
<td>図3.13、図3.13</td>
</tr>
<tr>
<td>14 10月16日 22:40-23:20</td>
<td>F</td>
<td>小バンド状、30dBZ、降雨エコーあり</td>
<td>図3.14、図3.14</td>
</tr>
<tr>
<td>15 10月17日 00:10-04:15</td>
<td>F, M</td>
<td>島中部上空、強いエコー44dBZ、降雨エコーとの混在</td>
<td>図3.15、図3.15</td>
</tr>
<tr>
<td>16 10月17日 10:25-11:25</td>
<td>F</td>
<td>分散したエコー、30dBZ</td>
<td>図3.16、図3.16</td>
</tr>
<tr>
<td>17 10月27日 03:35-04:35</td>
<td>(A)</td>
<td>分散したエコー、30dBZ</td>
<td>図3.17、図3.17</td>
</tr>
<tr>
<td>18 10月27日 10:30-11:15</td>
<td>F</td>
<td>分散した2本のバンド状エコー、30dB</td>
<td>図3.18、図3.18</td>
</tr>
<tr>
<td>19 10月27日 21:10-21:40</td>
<td>F</td>
<td>小エコー、23dBZ、すく消滅</td>
<td>図3.19、図3.19</td>
</tr>
<tr>
<td>20 10月27日 23:40-00:35</td>
<td>F</td>
<td>小エコー、28dBZ</td>
<td>図3.20、図3.20</td>
</tr>
<tr>
<td>21 11月1日 18:40-19:10</td>
<td>A</td>
<td>北東方向へ移動する分散したエコー、すく消滅、21dBZ</td>
<td>図3.21、図3.21</td>
</tr>
<tr>
<td>22 11月6日 06:30-09:55</td>
<td>F, A, M</td>
<td>島南西を象限、37dBZ、降雨エコーとの混在</td>
<td>図3.22、図3.22</td>
</tr>
<tr>
<td>23 11月7日 08:35-08:55</td>
<td>F</td>
<td>小エコー、21dBZ、1シーン</td>
<td>図3.23、図3.23</td>
</tr>
<tr>
<td>24 11月9日 01:20-03:40</td>
<td>F, M</td>
<td>地形性降雨の可能性</td>
<td>図3.24、図3.24</td>
</tr>
<tr>
<td>25 11月9日 14:45-15:25</td>
<td>F, A</td>
<td>地形性降雨の可能性</td>
<td>図3.25、図3.25</td>
</tr>
</tbody>
</table>
観測されたレーダエコーが火山噴出物なのか降下なのかをエコーの出現形態だけから判断することは不可能であり、
噴火情報（目視あるいは監視カメラによる噴火高度や不定期
におこなわれている火山灰の現地調査など）や気象状況（衛
星雲画像、天気図、高層気象データなど）といった様々な情
報をもとに判断する必要がある。しかし、観測されたレーダ
エコーをその出現形態からいくつかに分類しておくと経
過するエコーの形成理由を検討する上に有益である。表3.1に
挙げた事例について、見かけ上のエコーパターンから3つに分類する
ことができた。島上空での観測される場合（島上空限定タ
イプ：Fタイプと呼ぶ）、船の上空で発生し海上へ移動する
場合（海上移流タイプ：Aタイプと呼ぶ）、島の上空で発達
したエコーと移動する降雨エコーが混在する場合（混在タイ
プ：Mタイプと呼ぶ）である。

表3.1に挙げた事例についてのアニメーション画像を図
3.1～3.25に示す。アニメーションは高度1kmのレーダ反
射因子のCAPPI画像である。

3.3 観測期間中の全てのレーダ画像
観測期間中の全てのレーダ画像をまとめてCD-ROM（表
3.2参照）に収録した。レーダ画像の種類は高度1kmのレー
ダ反射因子とドップラー速度のCAPPI画像（レンジ10km、
レンジ30km）及び三宅島周辺方向のレーダ反射因子とドッ
プラーレ速度のRHI画像である。いずれの画像も1時間のア
ニメーションとして整理されている。表3.2に示した
CD-ROMをPC（WINDOWS98以上）のCD-ROMドライブ
に装着し、readme.htmlファイルをオープンする。記述に従
って操作を続けばデータベースにアクセスできる。

3.4 ホームページへのアクセス状況
2.5で述べたように、レーダ画像を防災科学技術研究所内
のホームページ（WITSS）上で公開した。改ざんチェックツ
ールおよび目視によるホームページの監視によれば、噴火情
報公開中にホームページの改ざんはなかった。また、イベン
トビューアによりシステムログを確認した結果、不正アクセ
ス等の異常も認められなかった。

ホームページ（WITSS）へのアクセス状況を図3.26と図
3.27に示す。図3.26によれば、Web上で公開を開始した9
月25日以降の1日あたりのアクセス総数は40,000件に達す
る。WITSSの画面は5分毎に更新しているので、常に接続
しているユーザーがいれば、アクセス件数は自動的に多くなる
。例えば、1人のユーザーが24時間続けてアクセスした場合の
アクセスカウントは2884回となる。WITSSへのアクセスサイ
ト数（図3.27）の推移を見てみると、最も多くのアクセスサイトがあったのは9月29日で160サイトからのアクセスが
あった。本報告書ではセキュリティの都合上示さないが、
WITSSへのアクセスしたユーザのIPアドレスや個々のアクセ
ス数についてのログが保管されている。

Table 3.2 観測期間中の全てのレーダ画像

<table>
<thead>
<tr>
<th>日付</th>
<th>MPR-Web</th>
<th>三宅島観測</th>
<th>アクセス数 [件]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/20</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>9/27</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>10/11</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>10/18</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>11/1</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>11/8</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>11/15</td>
<td>7000</td>
<td>7000</td>
<td>7000</td>
</tr>
<tr>
<td>11/22</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>11/29</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
</tr>
</tbody>
</table>

Fig. 3.26 防災科学技術研究所内に用意
されたホームページ用サーバ（WITSS）への1日間のアクセ
ス数の推移
4. 参考資料
ここでは、収録されたレーダデータのルーチン化、静止画像を収録した MO のリスト、今後の観測体制に役立つと思われるメモについて述べる。

4.1 収録データ一覧
a. レーダデータ DAT テープのリスト (VOL 名と収録内容)
表 4.1 にマルチパラメータレーダによる観測データ（生データ）の一覧を示す。データのフォーマットは iris 形式に国 SIGMET 社マニュアル参照）である。

<table>
<thead>
<tr>
<th>DAF</th>
<th>ボリューム番号</th>
<th>収録日</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX_00_09_23_LCZ</td>
<td>9/23 ~ 9/25</td>
<td></td>
</tr>
<tr>
<td>XXX_00_09_25_DQX</td>
<td>9/25 ~ 9/28</td>
<td></td>
</tr>
<tr>
<td>XXX_00_09_28_G4B</td>
<td>9/28 ~ 10/02</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_02_EIA</td>
<td>10/02 ~ 10/05</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_05_G90</td>
<td>10/05 ~ 10/10</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_10_EPB</td>
<td>10/10 ~ 10/13</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_13_R88</td>
<td>10/13 ~ 10/14</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_14_PGQ</td>
<td>10/14 ~ 10/18</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_18_MN8</td>
<td>10/18 ~ 10/23</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_23_KJS</td>
<td>10/23 ~ 10/27</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_27_OR4</td>
<td>10/27 ~ 10/30</td>
<td></td>
</tr>
<tr>
<td>XXX_00_10_30_KF9</td>
<td>10/30 ~ 11/01</td>
<td></td>
</tr>
<tr>
<td>XXX_00_11_01_ODM</td>
<td>11/01 ~ 11/07</td>
<td></td>
</tr>
<tr>
<td>XXX_00_11_07_JU5</td>
<td>11/07 ~ 11/09</td>
<td></td>
</tr>
<tr>
<td>XXX_00_11_09_PTP</td>
<td>11/09 ~ 11/13</td>
<td></td>
</tr>
<tr>
<td>XXX_00_11_13_QBH</td>
<td>11/13 ~ 11/16</td>
<td></td>
</tr>
<tr>
<td>XXX_00_11_16_V4T</td>
<td>11/16 ~</td>
<td></td>
</tr>
</tbody>
</table>

b. レーダ静止画像収録 MO のリスト (VOL 名と収録日時)
web 上で公開された静止画像は MO ディスクに収録された MO のリストを表 4.2 に示す。画像の形式は gif 形式である。表 3.2 で示した観測期間中の全画像データ（1 時間毎のアニメーション画像）はこの静止画から手動で作成したものである。
表 4.2 レーダ静止画像収録 MO のリスト（VOL 名と収録日時）
Table 4.2 List of radar images stored on magneto optical (MO) disks.

<table>
<thead>
<tr>
<th>MO ボリューム番号</th>
<th>収録日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>9/25, 10/13, 10/14</td>
</tr>
<tr>
<td>No. 2</td>
<td>9/26, 10/2</td>
</tr>
<tr>
<td>No. 3</td>
<td>9/27～9/29</td>
</tr>
<tr>
<td>No. 4</td>
<td>9/30, 10/1</td>
</tr>
<tr>
<td>No. 5</td>
<td>10/1, 10/2</td>
</tr>
<tr>
<td>No. 6</td>
<td>10/3, 10/4</td>
</tr>
<tr>
<td>No. 7</td>
<td>10/5, 10/6</td>
</tr>
<tr>
<td>No. 8</td>
<td>10/7, 10/8</td>
</tr>
<tr>
<td>No. 9</td>
<td>10/9, 10/10</td>
</tr>
<tr>
<td>No. 10</td>
<td>10/11, 10/12</td>
</tr>
<tr>
<td>No. 11</td>
<td>10/13, 10/14</td>
</tr>
<tr>
<td>No. 12</td>
<td>10/15, 10/16</td>
</tr>
<tr>
<td>No. 13</td>
<td>10/17, 10/20</td>
</tr>
<tr>
<td>No. 14</td>
<td>10/21～10/24</td>
</tr>
<tr>
<td>No. 15</td>
<td>10/25～10/28</td>
</tr>
<tr>
<td>No. 16</td>
<td>10/29～11/2</td>
</tr>
<tr>
<td>No. 17</td>
<td>11/3～11/8</td>
</tr>
<tr>
<td>No. 18</td>
<td>11/9～11/14</td>
</tr>
<tr>
<td>No. 19</td>
<td>11/15～11/20</td>
</tr>
</tbody>
</table>

c．デジタルカメラで撮影された三宅島の写真
噴煙活動を記録する目的で、観測期間中、監視カメラによる記録とは別にデジタルカメラで三宅島を撮影した。撮影は1時間毎にレーダ设置点である式根島から観測員がおこなかった。式根島は三宅島から約40kmのところにあるために、気象条件によっては明瞭な写真を撮影することができない場合があった。レーダエコーとの比較をおくためにデータベースとして整理した。画像のフォーマットはjpegである。

d．特徴的なレーダエコーが観測されたときの地上天気図
表 3.1 に挙げた特徴的なレーダエコーが観測されたときの地上天気図を整理した。時刻は 00Z, 06Z, 12Z, 18Zである。

e．特徴的なレーダエコーが観測されたときのゾンデ観測データ
表 3.1 に挙げた特徴的なレーダエコーが観測されたときの八丈島でゾンデ観測による気温、露点温度、風向、風速の鉛直プロファイルを整理した。時刻は 00Z と 12Zである。

f．特徴的なレーダエコーが観測されたときの GMS 画像
表 3.1 に挙げた特徴的なレーダエコーが観測されたときの静止気象衛星（GMS）の赤外画像と可視画像を整理した。

g．三宅島噴火の噴煙高度の記録
観測期間中の三宅島噴火の噴煙高度の記録を CD-ROM 内のディレクトリ「Miyake2000ash_height の下の付図 A(PDF形式)」に示す。噴煙高度は船上からの目視観測や監視カメラによるもので、気象庁によりまとめられたものである。
4.2 機動観測のための参考資料（2000.11 作成、2001.12 一部修正）

今回の観測はマルチカラーテレレーダが完成後、十分な試験運用をこなす状況で実行しなくてはならなかった。観測にあたって用意したメモは今後の観測に有益であると考えられるので以下に記す。しかしながら、今後、システムの改造や新しい機器の追加などにより、若干部分については当てはまらない可能性もあるので、メモの利用においては注意が必要である。

a. 必要電源、臨時電源、データ転送用専用回線についてはのメモ

電源関係

容量が十分確保できること（Xバンドマルチカラーテレレーダの場合：3相200V30A、単相100V50A、単相100V50Aで断電ブレーカー付）、配線等の安全面の確保が重要である。

近くまで3相200Vが来ていないときは工事日数・費用がかからないので、事前の工事完了に向けて早めの連絡が必要である。なおも約1ヶ月前には決定しておく。

通常は電力会社（東電等）への臨時電力契約の申請は電気店（地元業者）が行う、電柱から配電室の先進柱の設置は東電業者が、敷地内先進柱から電源板までの工事は電気工事店が施工する。

また申請には、それぞれの電力（特に3相200V）の使用目的、使用電力が必要である。電気の支払いは、臨時電力の場合には電気料金がかかる場合と、メーターがつかず臨灯量・臨力量を支払う場合がある（電力会社が決める）。

臨時電源が聞かれないときには、受動発電機の利用が考えられる。1回あたりの稼働時間が長くなる場合は、2台を用意するか、1台で交流に発電できるものを準備する。容量は不測の事態（連続運転）に備えて、必要容量よりも大きい発電機を準備しておく、またメディアをターゲットとするような場合は、臨時電源を引かずに発動発電機の利用を検討する。

プロバイダ契約に関して

インターネットを利用する場合、利用目的（接続回数・時間）に応じてプロバイダやサービスを選び続けることができる。長時間使用する場合は、完全固定料金で利用可能なNTTのフレッツISDN+フラットプラン（インターネット接続料金1,950円＋通話料金4,50円＝合計6,450円）等が経済的であるが、式根島はこのサービスの対象エリア外であった。契約は月単位で制限により計算されるプランもあるので、観測開始・終了日などが調整できれば、多少の節約が可能である。

対応対策とISDNに関して

臨時電源センター（0120-07-5103）で申し込みを行う。ISDNの申し込みは、NTTコミュニケーションズの法人担当と連絡をとり、正式な申し込みをする。直接現地のNTTに申し込むことはできないようである。しかし、契約の端末入力からME（工事担当者）までの手配には日数がかからないため、直接現地NTT事務所に事情を話して工事日を決めておくとよい。

b. マルチカラーテレレーダの停止・起動方法

今回の観測では原則として、つくばの防災科学技術研究所からレーダの操作を行った。ただし、トラブル発生等のためシステムのシャットダウン・再起動が必要となった場合や、つくばからリモート操作できなくなった場合等には、現場の観測員がシステムを一時的に操作しなければならない。システムを停止させる場合は防災科研と連絡をとって、必ず了解を得てから停止させること。

停止が起きた場合、UPSによる電源バックアップ（ワークステーションと周辺機器の）は約5分なので、すぐにDATのアンマウントを行う。アンマウントできずに電源が落ちるとそのテーブが読めなくなる可能性がある。

b-1. システムの停止

①「c. MPレーダDAT交換方法」のテーブの取り出し手順に従って、収録停止・アンマウント・テーブの取り出しを行う。

TASK Scheduler（MIYAKE），Radar Status（MIYAKE）のウィンドウが開いているので③へ

②OPERATOR：mp_dpx（irisツールバーのこと）のMenuを選択し、さらにメニューが開くので、Archive Menuを選択する。TASK Scheduler（MIYAKE）とRadar Status（MIYAKE）のウィンドウを開く（通常は開いたままである）。

③TASK Schedulerウィンドウに表示されている観測スケジュール（本観測ではMIYAKE_CAPPIとMIYAKE_RHIの2つである。まず、scheduleと表示されているタスクがあればそこにマウスを移動し、メニューからSTOP(Right Now)を選んでタスクを停止する。runningと表示されているタスクは、時間的に余裕があるときはSTOP（when done）で、そうでない場合はSTOP（Right Now）を選んでタスクを停止する。全てのタスクがidle状態になるまで待つ。

④Radar StatusウィンドウのRadar ProcessとServo PowerをクリックしてそれぞれOffにし、RadiateをクリックしてOffを選ぶ。

irisを以下の手順で終了する。

i) irisnet（通常は残してある）以外のiris関係のウィンドウをすべて閉じる（各ウィンドウのツールバ
b-2. システムの起動
① 空中線制御装置, 送受信装置, 加圧装置の電源を ON にする。
② 信号処理装置の下にあるプレーカーを ON にする。
③ 信号処理装置真下にある UPS のスイッチを OPERATE 側に入れ, UPS の INV と BATT ランプが点灯するまで待つ。
④ UPS の INV と BATT ランプが点灯したら, WS のモニターと本体の電源を入れる。
⑤ しばらくして login 画面が出たら, login 名 operator で login する。
⑥ unix システムが落ち着いたら, dtterm を開いてコンソールから sirisnet に入力する。
⑦ irisnet ウィンドウ上の siris ボタンをダブルクリックする。
⑧ 電源を入れた後, iris が終了すると, ウィンドウ右上の irisnet をクリックしてアイコン化する。
⑨ iris ボタンをダブルクリックすると, すぐに iris ツールバーが現れる。
⑩ 送受信装置と信号処理装置の local-remote 切換えを remote に入れる。
⑪ iris ツールバーの connect をクリックして local を選ぶ。
⑫ iris ツールバーの Menus から Radar Status, TASK Scheduler を選んでウィンドウを開く。
⑬ 送信装置の ready ランプ(緑色)が点灯していることを確認する。ランプが点灯していなかったら, 点灯するまで待つ。
⑭ (このランプが点灯しないと電波が発射されない, 送信装置の電源を入れてから約 15 分程度かかる)
⑮ (デフォルトで MIYAKE が選択されているはずであるが, デスクに MIYAKE が選択されていなかった場合)
 TASK Scheduler ウィンドウのツールバーから File→Open を選び, 現れたリストの中から MIYAKE を選ぶ。
⑯ Radar Status ウィンドウの Servo Power をクリックして On, Radiate をクリックして Auto を選び, Radar Process をクリックして On にする。
 これで毎 5 分になると観測を開始する。
⑰ 別紙” MP レーザー DAT 交換方法”のテーブのセッティング手順に従って, 収録用 DAT テープのセッティングを行(以前のテーブに追加書き出す場合は初期化しない)。
⑱ iris ツールバーの Menus から Real Time Display をオープンし, 表示 40km を 60km に変更する。表示だけの問題なので観測データに影響はしない。

b-3. 商用電源から発電機電源への切換え
① 1. システムの停止手順にしたがってシステムを停止する。

一の File→Close)。
マルチバーチャーレーザによる三宅島高雄山の嗅覚観測——真木・岩波

②分電盤を開けて内部のプレーカーをすべて落とす。
③プレーカーを落とすと照明の電源が車のバッテリーに切り替わる。停電時は機中電力を点灯して、トラックのバッテリ上がりを防ぐため、なるべく早く(5分以内)分電盤左脇のスイッチを落として室内灯を消す。
④発動機発電機のイグニッションキーを差込み、始動する（キーは機の左一番上の引き出し）。
⑤3分間アイドリングした後、レバーを運転に入れる。
⑥分電盤のメータを見て、発動機発電機から200Vと100Vの電圧が供給されていることを確認。200Vは3相なのでR-S-T-T-Rのスイッチをスライドさせ、すべてが±10%以内であることを確認する。必要があれば発電機を調整する。
⑦発電機電源・商用電源切り換えスイッチを発電機側に入れる。
⑧分電盤左のスイッチを上げて照明をつける。
⑨分電盤内のプレーカーをすべて上げる。
⑩システムの起動手順(b-2)にしたがってシステムを起動上げる。

c. MPレーザDAT交換方法

①PERATER:mpc_dpxウィンドウ（irisツールバーのところ）のMenuをクリックしてプルダウンメニュー内のArchive Menuを選択する。
②ウィンドウの左側の真中にあるCommands横のボタン(この時点では"record"と表示)をクリックし、stopを選択する。
③収録がとまったら（表示がDONEになったら）、同じボタンでunmountを選択する。
④表示されているIDとファイル名が消えたら（20秒くらいかかる）DATの取り出しボタンを押し、DATを取り出す。
⑤DATを書き込み禁止にする。

c-2. テープのセッティング

①画面下のツールバーの中にある、モニタの形をしたアイコンをクリックし、dttermコンソールを開く（通常は開いたままにしてある）。
②DATドライブにテープを入れ、しばらくして録のランプの点滅が収束したら、コンソールから

```
init_iris_tape -u 1 enter
```

Initialize this tape [No]? に対して enter

と入力してテープを初期化する。
③初期化が終わったら、一度テープを取り出し、コンソールに表示されている

```
Initialized tape:MPX_??_??_??_??
```

のMPX-??_??_??_??を以下をラベルに記入してテープに貼り、テープを再挿入する。DAT交換表にも記入する。
④Archive MenuのツールバーのDriveでDAT1を選ぶ。
⑤Commands横のボタンでMountを選ぶ。
⑥テープのスキャンが終わったら、同じボタンでrecordを選ぶ。

以上でDATの交換は終了、書き込みが1観測サイクル（約5分）に2回（VOLUMESCANとRHI観測後に）行われる。

注意
DATの録ランプが点滅中は次の操作をしないこと。
特にDATをドライブを入れた後は、しばらく時間がかかる。

d. CCTカメラの運用・設定・作業について

4台のカメラで三宅島およびレーダーのアンテナ周辺を監視し、また監視映像の録像を行う。三宅島監視のカメラ1台（トラックサイドの5mポールに設置されたもの）はリモートコントローラー（現場室内およびつくば）で動かすことができる
三宅島はもとよりレーダーサイトを含む観測現場周辺を、室内およびつくばで監視することも可能である。なお、他の3台のカメラはレーダーのアンテナ周辺の監視用であり、固定されている。

運用（案）
ディスプレイ上のある分割画面による監視およびタイマー設定による観測、あるいは半分で4分のカットで18時までの録画（監視運行は18時30分～3時間55分とタイマー設定している。したがって18時～18時30分および3時55分～4時はレコーダおよびディスプレイの電源が落ちる）とし、さらに噴火等の現象を録画した時間帯についてはMOコピーセーブ保存する。MOへのコピーは録画時間外（18時30分以降早朝まで）に、夜勤担当者が行う。

録画設定（00/09/28, 案）
録画はイメージクオリティ＝ハイ、4台の各画像をそれぞれ0.4秒（設定画面では0.1秒）に収録する設定としている。この画像データは、ディスクレコーダーおよび増設ハードディスク含100GBに収録され、97時間20分間収録が可能であり、その後上書きを繰り返していくこととしている。したがって、観測が通常どおり行われていたら、1週間前のデータまで保存されていることとなり、また3分程度（長37分記録可能）の監視映像であれば640MBのMO1枚にコピー収録・保管が可能である。

作業
DX-TL150デジタルディスクレコーダーの簡略説明（ビニールケースに入っている）およびDX-TL150デジタルディスクレコーダーの取扱説を参照しながら以下の作業をおこな

－17－
う。作業中・監視中にディスプレイ、レコーダーバネル等に異常があった場合は、まずつばにボタンを押す。指示を仰ぐこと。なお、緊急に電源を切る必要がある場合は、CCT 関連のデスクトップ（テレビの横、奥）2 台のスイッチを OFF にし、元の電源より落とす。

日動者

・ 録画状態の確認
ディスプレイレコーダーのパネル前面右中の“記録”ボタンが赤く点灯しているかどうか確認する（朝 1 時より夕
方 18 時までのタイマー録画になっている）。
“記録”ボタンが点灯していない場合は、パネル前面左
下の“タイマー”ボタンを押す。すぐに“記録”ボタンが
赤く点灯する。また点灯しない場合は、タイマー設定
が変更されている可能性がある。パネル前面下の“設
定”ボタンを押したとき、タイマー設定状態を確認する（取り
説 p61-62）。

・ 送信装置の切換え
つばより遠隔操作を行う場合は、つばより電話送信
があるので、それにしたがって 3 つの切換え器（ディス
プレイ横の 3 段重ねになったもの、上からカメラ、送信,
レコーダーの制御切換え器です）を操作する。通常、切
換え器はカメラ→遠隔操作、送信→カメラ、レコーダー→遠隔操作にしておく。

・ 画面の監視
4 画面の監視を適宜行ってください。録画中ですので,
カメラのコントローラーは動かさない。カメラの操作が
必要な場合はつくばより操作するか、指示する。

夜勤者

・ 保存が必要な録画データの MO へのコピー
日中の録画中に流れ等の現象が見られた場合には、つく
ばよりの指示にしたがって MO へのコピー収録・保管を
おこなう。
① MO を挿入する。
② レコーダーバネル前面下の“コピー”ボタンを押す。
③ ディスプレイ上に設定画面が現れ、コピー機器：HDD
コピーマシン、上書きコピー：上書きとし、手動で開始
時間、終了時間を入力し、実行する。入力はシャトル
リング・ジョグダイヤルで行う。（取り説 p77-78）
④ コピーが完了したら、MO を取り出し、日付等を記入
したラベルを貼り付け、書き込み不可にして保管する。

・ 送信装置の切換え
日動と同様。

・ 画面の監視
日動と同様。
ただし、三宅島観測用カメラによって周辺の監視が必要
な場合は、カメラコントローラーを用いてカメラを操作
してください。
① カメラ切換え器を遠隔操作→リモコン操作にする。
② リモコンを用いてカメラの位置を操作する。すでに,
バネルの番号 1 ～ 16 に、サイト周辺を監視できるよう
にカメラ位置が登録されているので、“呼び出し”、
“番号”の順でボタンを押しカメラを移動させる。そ
の他、矢印ボタン、ファーカス、ズームボタンを用い
る。
③ カメラ位置を操作した後は、三宅島監視の録画時の画
像を統一するため、通常の三宅島監視のカメラ位置
（position2）に戻し、カメラ切換え器をリモコン操作
→遠隔操作に戻しておく。
（このファイルは、観測現場窓内の PC（FMV6450）の D:
￥sikine￥CCT.doc）

e. 式根島観測補助作業内容

e-1. 常時おこなうこと
① レーダ及びその周辺の監視
サイト周辺に異常がないか監視する。特にレーダの観
測方向付近（海岸部の降りしめ径辺）に長い間立ち止
まっている人がいたら、観測に支障があるので立ちま
らないように注意を促す（特に CCT カメラで認識しづらい
夜間は気をつけこと）。
② リアルタイムディスプレイの監視
小屋に引き込まれているレーダのディスプレイを見
て、データの取得・送信が正常に行われているか確認す
る。
（1）エラー表示が出たら、時刻とエラーの種類を観測日
誌に記入する。
1 日 3 回（10 月 26 日現在）はシステムの都合で必ず
エラーが発生する。
（2）ＩＲＩＳ 番のエラーでレーダウィンドウが隠れ
てしまったその時刻を控えておくこと。
（3）観測車シュート内のワークステーションでエラ
ーワインドウの OK をクリックして復旧させる。
（4）エラーが（頻繁に）発生した後、異常なエコーが出
るような場合は、VAIO のデスクトップ上の コメ
ントアップダウンからコメントを変更する。また
防災研、三菱電機が連絡すること（WEB のコメ
ント更新方法参照）。

e-2. 朝の日動者交代時
① レーダ及びレーダ周辺に異常がないかを確認する。
異常があった場合は防災研（NIED）に連絡し、三菱電
機（MELCO）と連絡をとって指示を受ける。連絡先は緊
急時連絡方法を参照。
②DAT の交換（1 日おき）
別紙“MP レーザ DAT 交換方法”にしたがって、DAT の交換を行う。DAT を交換したら、DAT 交換表（シェルター内）と観測日誌に記録しておくこと。

e-3. 毎時の作業
①噴煙の観測（原則として日中）
噴煙の観測結果を観測地帳に記入する。観測地帳の該当項目は以下のとおり。
・噴煙の状態：噴煙が見えるか、噴煙の有無、顕著な現象の有無を簡単にコメント。
Ex.) 白色の噴煙あり。
白色、雲により上端は不明。
雲のため確認できず。・・・など。
・噴煙高度：三宅島巌山の高度を基準に噴煙高度を目測する。
噴煙高度は、山頂部から噴煙トップまでの距離をいう（海面からの高度ではない）。
・巌山の高度：700m として高度を決める。
（地図上 814m だが山体崩壊のため約 700m:9 月初旬）
※夜間も観測できるような噴火の場合は、夜間も行う。
②三宅島の降雨状況の観測（原則として日中）
三宅島付近の降雨の有無や顕著な積雲活動の有無を野帳に記録し、降雨や顕著な積雲活動が見られた場合は、写真撮影を行う。また必要に応じてビデオ撮影を行う。
③デジカメによる撮影と公開ホームページ中の写真ページの転送・更新（原則として日中）
毎時の噴煙の観測時に状況をデジカメで撮影。また、観測風景や設置点の様子、サイトを訪問した方なども適宜撮影。撮影した写真のファイルはデータ通信装置（VAIO）へコピーし、別紙の“WEB 写真ページの更新”にしたがって防災研究所の公開ページ（WITSS）の写真ページを現場から更新する。三宅島が見えなくても撮影・更新は行うこと。ページに載っている写真のうち 2 枚はサイトの状況、1 枚は観測中噴煙が最大だった事例なので、主に更新する写真は photo4.jpg の 1 枚、ほかの 3 枚に対してもよりよい写真が撮られたら更新する。ファイルは MO などの媒体にコピーして整理する（日動者が 17 時の観測終了後に行う）。写真撮影、ページの更新作業を行ったら、観測野帳の該当項目をチェックする。
※朝は逆光となるので、MENU ボタンの上にある programAE ボタンを何回か押して山マークを選択する良い。
④防災公開ホームページ(WITSS)の動作確認
1 時間ごとに WITSS ヘアクセスし、画像に異常がないか、不正な書き換えが行われていないか全ページをチェックする。また、データが正常に更新されているかチェックを行う。パソコンは FMV を使用、Internet Explorer のホームに WITSS のアドレスが登録されている、ホームページに異常が発見された場合は以下の連絡先へ連絡する。
・平日の日中（9:30～18:00）三菱スペースソフトウェアの担当者、又は、防災研査（NIED）の担当者
・上記の時間以外 防災研査（NIED） 担当者

e-4. その他ルーチン的な作業
①屋外ライト点灯・消灯
レーザ周辺は監視カメラにより監視するので、暗くなったらライトを点灯すること（屋内に引き込まれているライトのコンセント 2 本を入れる）。
②レーザの状態監視（日動者のみ）
マゲトレトーン電源・電圧や機器の状態などをチェックシートに従って朝昼晩の 1 日 3 回チェックする。
③デジカメ撮影ファイルのプリントアウト
1 日分の撮影が終了したら、PicGear で一覧を印刷して、ファイルに整理する。1 日分のデジカメ画像を印刷する際に、画像ファイルを MO にバックアップを取る。
④トラックのアイドリング
トラックのパッテリーやガリを防止するため、3 日に 1 度トラックのアイドリングを行う。トラックのヘッドの後部にエアバッグのスイッチがあり、これが下がっていることを確認してからエンジンをかけること（普段は下がったままになっているはず）、エアバッグのスイッチの位置はわかりづらいので、引き続き時に確認する。
⑤観測日誌の記入

e-5. 見abbrev(data)な噴火活動が起こった時におこなうこと
①デジカメ、ビデオカメラ（三脚に固定）で撮影し、NIED へ連絡する。
②噴煙監視カメラのデータを保存
顕著な噴火活動が見られた期間について、噴煙監視用 CCT カメラで収録されたデータを MO ディスクへ保存する。その期間をバックアップするかは NIED の指示を仰ぐ。CCT カメラシステムのハード容量は、収録条件によるが連続で約 2 週間の収録が可能である。ディスクがいっぱいになると古いデータから上書きされる。夜間は CCT カメラの画像収録は行わないで、録画を停止した夜間（18 時～30 分以降）に MO へのバックアップを行う。

e-6. レーザのトラブル時の対応
データ異常、送信異常などのトラブル時は、まず最初に
NIED と MELCO へ連絡し、NIED、MELCO の指示によりシステムの停止や再起動を行う。また、(付近に雷雲が発生して落雷による停電の危険がある場合や) 停電時には商用電源から発動発電機への切換えが必要となり、同様にシステムの停止・再起動が必要である。

この他、専用線回線がダウンした場合には衛星回線への切換え作業を行う。
システムの停止・起動、商用電源への切換え手順は別紙 "MP レーダーの停止・起動方法"、衛星回線への切換えは "衛星データ通信装置制御手順書" を参照。

電波の送信を止めたときは、無線業務日誌(レーダマニュアルのある書棚)にその日の電波送信時間を記入する。その他の日は 24 時間発射しているので、書かなくてよい。

e-7. WEB 写真ページの更新
photo1（武根島レーダサイト）、photo2（防災科研 MP レーダ）、photo3（三宅島噴煙 2000/9/22 10:00LST）、photo4（最新の写真）となっている（10 月 27 日現在）、photo3 より鮮明な噴煙を撮影できれば、photo3 を変更する。通常は photo4 のみ変更する。以下、web 写真ページの更新方法を記す。
①デジタルカメラで撮影後、メモリースティックをデータ通信装置のスロットに差し込む。
②メモリースティックは S ドライブとして認識される。
D:
③photo1 をリネームする。
D:
④送信した写真ファイルを photo.htm に保存。日付ごとのディレクトリに送信した時期のディレクトリ(例 09)を作成し、photo.jpg のみコピーする。以下のディレクトリ内にコピーする。また、レーダサイト訪問者の写真をとり、file 名を訪問者の名前にして
D:
⑤写真ページを photo.htm にリネームする。
⑥画像ダウンロード bat を実行して、写真ページをダウンロードする。これは、防災科研の方で作成されたページの修正を行っており、写真ページの変更を保持するために行うもの。
⑦画像アップ/ダウン内にファイル "photo.jpg" がダウンロードされる。HTML ファイル photo.htm をエディタ(メモ帳)で変更する(前回送信したファイルがなければ、後述の取り込みツールでダウンロード)。
⑧画像アップロード bat を実行。
⑨更新確認。

e-8. 写真の整理
送信した写真ファイル(pja) と photo.htm を保存。日付ごとのディレクトリの下に送信した時刻のディレクトリ(例 09)を作成し、photo.jpg と photo.htm を作成したディレクトリ内にコピーする。また、レーダサイト訪問者の写真をとり、file 名を訪問者の名前にして
D:
に保存する。観測者についても同様。

謝辞
この観測をおこなうにあたっては様々な方にお世話になり、大島東村の島の列島、神津島旧港場、大島並びに神津島旧港場にはレーダの設置場所の調整に関しで多大な便宜をはかっていただきました。特に新島村役場にはレーダの設置場所を提供していただいた。ここに記して感謝いたします。
（原稿受理：2001 年 12 月 11 日）
マルチパラメータレーダによる三宅島雄山の噴煙観測—真木・岩波

要旨

三宅島雄山の火山活動のマルチパラメータレーダ観測の概要と結果の速報を述べる。観測の主な目的は火山噴火の際の火山灰の空間分布や時間変動の情報を取得し、島内および防災関係の活動を支援することである。このために、防災科学技術研究所のXバンドのマルチパラメータレーダが三宅島から約40km離れた地点にある桜島に設置された。観測期間は2000年9月25日～11月20日である。レーダ観測は24時間体制でおこない、レーダ情報はリアルタイムでweb上に配信された。観測期間中に顕著な噴火はなかったが、雄山上空にレーダエコーが観測されることがあった。噴火活動と関係したかどうかは不明であるが、これらのエコーを添付CD-ROM(Appendix)に収録しwebブラウザーやで閲覧できるようにした。

キーワード:マルチパラメータレーダ、偏波レーダ、火山噴火、火山灰、レーダ観測