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Abstract

Recent development of the GPS satellite technique has made it possible to
determine the three—dimensional geodetic position of points on the Earth’s surface. In
the conventional way of geodesy the geoid was a basis for determining the geodetic
position. At that time we dealt with the geoid—based theory of physical geodesy using
the Stokes and the Vening—Meinesz integral formulas with gravity anomaly. In the
satellite age another quantity, “gravity disturbance”, which is defined directly on the
Earth’s surface, is used instead of gravity anomaly. The Neumann boundary—value
problem and its inverse problem are formulated here using the Neumann and the
modified Vening—Meinesz integral formulas with gravity disturbance, estimating the
truncation error of numerical integrations, and taking the Molodenskii terrain
correction terms into consideration. Furthermore, the Cartesian coordinate approxi-
mation for practical calculations of GPS—based phyvsical geodesy is introduced.

Key words : gravity disturbance,—GPS (Global Positioning System), Neumann’s boundary
—value problem, physical geodesy.

1. Introduction

One of the major problems that faced physical geodesists was the determination of
the geoid from a set of geodetic and gravity data, until satellite techniques became
applicable for geodetic measurements. Until that time geodetic measurements were
reduced to the geoid by solving the geodetic boundary—value problem through the
Stokes and Vening—Meinesz integrals. The geoid was then a basis for determining
geodetic positions on the Earth’s surface. However, the geoid is an imaginary surface in
land areas as defined by an equipotential extension landward from the quasi—stationary
sea surface. Despite the fact that the theoretical aspect of physical geodesy was made
clear by the Molodenskii approach (Molodenskii et al., 1962), some ambiguities remained
in the practical determination of the geoid.

Recent development of satellite techniques, such as GPS (Global Positioning
System), has made it possible to determine accurately the three—dimensional geodetic
position of points on the Earth’s surface. The advantage of this satellite method is that
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such a determined position is directly referred to the geocentric coordinates without any
consideration of the geoid. The geoid—based concept of gravity anomaly is being
replaced due to the new satellite system by another quantity, “gravity disturbance”
{Heiskanen and Moritz, 1967), which is defined directly on the Earth’s surface and should
be used instead of gravity anomaly. Thus, the conventional way of solving the Stokes
and Vening —Meinesz integrals with gravity anomaly should also be replaced by the
solution of the Neumann boundary—value problem for gravity disturbance.

The purpose of this paper is to obtain a new formulation of gravity disturbance by
rewriting conventionally—used mathematical formulas relating to the gravity anomaly.
The Neumann boundary—value problem and its inverse problem with the Neumann and
the modified Vening—Meinesz integrals, estimating the truncation errors of numerical
integrations, and taking the Molodenskii terrain correction terms into consideration will
be discussed herein. In addition, the use of spectral analysis techniques available for data
gridded in the Caresian coordinates, with their applications to the evaluations of the
Neumann and the modified Vening—Meinesz integral formulas and the Molodenskii
terrain correction terms will be considered. It is assumed that the method and formulas
originally introduced in this paper can be used for practical calculations of GPS—based
physical geodesy.

2. New Height System and Gravity Disturbance

First of all, the geodetic height system according to the modern theory of physical
geodesy will be considered. First, suppose a point P on the Earth’s surface and another
point R on the ellipsoid, as shown in Fig. . The straight line PR, which is normal to the
ellipsoid, is called the true height of P above the ellipsoid. The direct measurement of
the true height can not be made by the leveling survey method, but in recent vears its
highly accurate determination can be realized by a satellite distance—measuring
technique such as GPS.

A new surface called the telluroid is drawn between the Earth’s surface and the
ellipsoid in Fig. 1. The true height PR (=h) is then divided by the telluroid into two
parts : normal height QR (=H) and height anomaly PQ (=¢). The normal height is
derived from geopotential differences and is measured in practice by the leveling
combined with gravity measurements, The conventional leveling height is not exactly
equal to the normal height, In the first approximation theory, the leveling height with
a correction considering geopotential differences can be practically used for the normal
height.

The height anomaly is defined as the height difference between the true height and
the normal height. In the conventional way, the height anomaly is obtained by numerical
computations of the Stokes integral with gravity anomaly over the whole surface of the
Earth. The modern determination of the height anomaly can be made by comparing the
normal height with the GPS-—derived true height (Engelis et al, 1984 ; Denker and
Wenzel, 1987). From this one can see that the ambiguous concept of “geoid” in old
—fashioned geodesy is being replaced by this new height system.

Consider now the gravity g measured at P on the Earth’s surface. Meanwhile, the
normal gravity y at the same point is computed by using Somigliana’s normal gravity
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Fig.1 Height system definition with normal height H, height

3

anomaly ¢ and true height h(=H | ).

formula and the vertical gradient of normal gravity. The gravity disturbance is then
defined as their differences :

ag=glP)—¥P). (1)

g at P is measured by a gravimeter, while ¥ is computed if the geodetic position of P is
determined by GPS. Therefore, §g is an obtainable quantity.

Up to the time when the GPS method became available, the true height could not
actually be obtained, so that the gravity disturbance was an imaginary quantity. Instead
of the gravity disturbance, the gravity anomaly is defined as

Ag=g(P)—#(Q). (2)

As the normal height of Q is measured by leveling and gravity measurements, we can
compute 7 at Q and then obtain Ag.

The disadvantage of this definition, however, lies in the fact that the geodetic
positions of P and Q are different from each other. The height anomaly PQ remains
unknown until one performs the Stokes integration of obtained gravity anomalies.
Despite such a disadvantage, old—fashioned textbooks of physical geodesy intensified
the importance of the gravity anomaly because it was an obtainable quantity. However,
the recent development of the GPS method has made a radical change in geodetic
importance, and the gravity disturbance has thus replaced the importance of gravity
anomaly.

As a matter of fact, many are very familiar with the term “gravx:ty anomaly” in
fields of both geodesy and geophysics. This term will survive even after gravity
disturbance takes its place. Yel my personal opinion is that we should abolish the
conventional definition of gravity anomaly in the form of Eq. (2) and adopt a newly
defined “gravity anomaly” as in Eq. (1) instead of using the term “gravity disturbance”.
I think that this will be a way to avoid confusion at the time of the revolution of geodesy.

3. Neumann’s Boundary—Value Problem
Suppose a potential function T (r, ¢, A) outside a certain closed surface S, where r,

¢ and A are distance, geodetic latitude and longitude in the spherical coordinates. When
T satisfies Laplace’s equation
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VEIT =0 (3)

outside S, it is called harmonic in the exterior of S. There always exists boundary values
of T on S. It is possible to compute values of T at every point outside S from known
boundary values on 8. This mathematical procedure is called “Dirichlet’s problem” or
the “first boundary—value problem of potential theory”.

The second boundary—value problem, alias “Neumann’s problem”, is defined as
follows : when the normal derivative of T is given on S, one can compute T at every
point in the exterior of S. The gravity disturbance dg is a normal derivative of T. If
the shape of the Earth is approximated by a sphere with the radius R, the boundary
—value condition is given by

aT]H )

o[ 5
at a certain point P on S. Eq. (4) indicates that the gravity disturbance obeys Neumann’s
problem.

In the third boundary value problem a linear combination of T and its normal
derivative is given on S. The definition of gravity anomaly includes implicitly height
anomaly ¢ (PQ in Fig. 1). In this case, a correction term for the discrepancy of & should
be added to the boundary—value condition. For a spherical approximation of the Earth's
shape, the boundary value condition of the gravity anomaly can be expressed by

()

instead of Eq. (4). It is seen that Eq. (5) has a form of the third boundary—value problem,
consisting of a linear combination of T and its normal derivative.

Consider now a solution of Neumann’s problem expressed by a spherical surface
harmonic function. T is expressed by a spherical surface harmonic series as

T, ¢, 0= (R "y 4.0, (6)

with the spherical surface harmonic function as
Yalg, A ):mIZin(CnmCOS mA+ S sin mA )P, (sin ¢ ), (7

where G is Newton’s gravitational constant, M the Earth’s mass, P.™ the associated
Legendre function, and C.™ and S»™ spherical harmonic coefficients. It can be easily
proved that Eq. (6) satisfies Laplace’s Eq. (3).

Notice that Eq. (6) excludes terms of degree n=0 and n=1. Assume the mean value
of T to be zero, so that the zero—degree term is not included in Eq. (6). The first degree
terms correspond to the coordinates of the Earth’s gravity center. The origin of the
spherical coordinates is set at the Earth’s gravity center. Therefore, the first—degree
terms vanish automatically from Eq. (6).

Differentiating Eq. (6) with respect to r and substituting it into Eq. (4), we have
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86, )= 3 8u(4, A), @®
where
S, V= (n+1)Yu($, A). ©)

Eliminating Y.(#, A) from both Eq. (6) and Eq. (9), the potential disturbance T is in the
form of the summation of the spherical surface harmonic function of gravity disturbance
0 gn, that is

Taking two points P and P’ in the coordinates (¢, A) and (4’, A") on the spherical
surface S, ¢ is denoted as the spherical angle between P and P’, which is given by the
cosine formula,

cos ¢ =sin ¢ sin ¢"+cos ¢ cos ¢'cos (A'—A), (1)

(see Fig. 3). Applying the orthogonality condition of the associated Legendre function to
both sides of Eq. (8), we obtain an integral form:

2‘3;1 fn”dA'fag(w, A Puloos #dcos #ad. (12)

6gn(§35, /1):

Substitution of Eq. (12) into Eq. (10) gives the Neumann integral

T(r, ¢, = [ i’ ["N(r, $)58(8", X )éos #de, (13)
where
N(r, gb):ﬁz 21?:11 (%)HHPH(CDS ¢). (14)

We call N(r, ¢) Neumann’s function or the modified Stokes function. Eq. (13) shows that,
if dg is obtained by gravity measurements on S, values of T at every point outside S can
be computed by integrating 6 g weighted with N(r, ¢). This is the solution of Neumann’s
problem for gravity disturbance. Practically Eq. (13) can be evaluated by a summation
over finite compartments dividing the integration range.

It is very convenient for the numerical integration of Eq. (13) to rewrite N(r, ¢) as
a closed formula. Using a summation formula of Legendre’s polynomial with x =cos ¢

& 2n+1 ., _ 2t bt x 1 2xt R .
2t Pala)= T log = i (15)

v

the closed formula of the Neumann function is then obtained in the form :

__R_3/(RY 2R _,  R—rcos¢+4
Nr, ¢)= Q(r)COS(’%L ¢ log r(l—cos ¢) ’ (18]
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where
£=v1r*+R*—2Rrcos ¢. (17)

The first and second terms of the righthand side of Eq. (16) correspond to the zero—and
first—degree terms of the lefthand side of Eq. (15).

If the boundary values of T on the surface S are known, the height anomaly can be
estimated. Using the Bruns formula, which relates the height anomaly to the potential
disturbance, from Eq. (13) we have

(g, )= TR EA)

— R ax ’ E, ’ ’ ’ -
“dnr ) O [NR 91588, X cos ¢'dg (18)
As previously mentioned, the height anomaly is obtained directly by subtracting the
leveling height from the GPS—derived true height. Eq. (18) shows that it is also possible
to determine the height anomaly from the gravity disturbance. The comparison of these
two kinds of height anomalies enables one to check the accuracies of the geodetic
measurements. Eq. (18) is also called Neumann's integral. Taking r=R in Eq. (16), we
get
N(R, ¢):*1f%cos g&—l—cosec%”ﬂog (l+cosec-12b-). (19)

Almost similarly the solution of the third boundary—value problem for gravity
anomaly can be obtained. However, as this solution is given in almost all textbooks of
physical geodesy, it is omitted here. In this case, N(r, ¢) is replaced by the Stokes
function

o . n+1
S(r, ¢)= Z—BQ(E) Palcos ¢). (20)
It is interesting to notice that the denominator n-+1 in Eq. (14) is replaced by n—1 in Eq.

(20). Since both the functions N(R,¢) and S(R, ¢') diverge to infinity when ¢ =0, they are
multiplied by sin ¢ and shown in Fig. 2. N(R, ¢)sin ¢ and S(R, ¢ )sin ¢ converge to 2

when ¢ =0.
2
1 /\
0 Nis .

1)

= ¥
135 180°

-1 N(RY)sin¥

2
S(R.¥)sin¥

Fig.2 The Neumann function N(R, ¢ )sin ¢ and the Stokes function S(R, ¢ )sin ¢.
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4. Modified Vening—Meinesz Formula

The vertical PR is normal to the ellipsoid in Fig. 1. The direction of gravity, which
is known as the plumbline, at an observation point P differs slightly from the direction
of the vertical. The included angle between the vertical and the plumbline is called the
deflection of the vertical or the deflection of the plumbline. This small angle is related
to the horizontal gradient of the height anomaly. A north—south component and an east
—west component of the deflection of the vertical, denoted by & and 7, are given—by
differentiating the height anomaly ¢ with respect to ¢ and A, that is

13t
SR
21)
__ 1 et
7= " Rcos ¢ A"

The intention of this section is to express these two components in an integral form
similar to Neumann'’s integral. Differentiating Eq. (18) with respect to ¢ and A, we get

£(¢,4) ON(R, ¢)/

an n
= k[ Se(#, Xlcos 'dd’.  (22)
7(, A) ON(R, ¢)/ (cos ¢al)
This integral includes differentiations of Neumann’s function with respect to ¢ and

A. From the elementary spherical trigonometric identities (Fig. 3) we can readily verify

5N{al§. ¢y _ gNgj', 9 o o
. (23)
@I(HF/% ¢)_ dNél{?/}, D os dsin a |

where ¢ is the azimuth reckoned clockwise from the north. Replaced by these relations,
Eq. (22) is finally written as

North Pole

Fig.3 A spherical triangle showing the spherical coordinates.



Report of the National Research Institute for Earth Science and Disaster Prevention, No. 48 ; October 1991

&(h, A) e *dN(R. ¢) cos @
=iy X [EGF ) A eos $dg. (24)
n(p, A) sin a

This is the modified Vening Meinesz integral to calculate the two components of the

deflection of the vertical from the gravity disturbance distribution on the Earth's

spherical surface.

Differentiating Neumann’s function Eq. (19) with respect to ¢, the modified Vening
Meinesz function is obtained as

dN(R, ¢) _ 3

dd 5 sin ¢ +cosec gb(l cosec "b). (25)

a9
The azimuth @ is computed from known geodetic positions of P and P’ as

cos ¢'sin (A'—A)
cos ¢sin ¢ —sin gcos ¢'cos (A" A)

tan ¢ = (26)
Then we can integrate numerically Eq. (24) with gravity disturbance data measured on
the Earth’s surface. Special consideration, however, should be made for the numerical
integration because dN(R, ¢)/d¢ sin ¢ diverges to infinity when ¢=0. The numerical
integration method will be given in the following section.

The direction of the plumbline can be determined by astronomical measurements to
obtain the astronomical coordinates of an observation point P. Meanwhile, the GPS
measurements also determine its geodetic coordinates. Since these two coordinate
systems are independently established, both the coordinates may not coincide with each
other. The discrepancies between these two coordinates give two components of the
deflection of the vertical. Such obtained deflection is called the “astronomical deflection
of the vertical”, discriminating from the “gravimetric deflection of the vertical”
calculated from the modified Vening Meinesz integration. Although both the deflections
of the vertical should be essentially coincident, systematic errors, if they exist, may be
caused by a mis—setting of the base ellipsoid. Comparison of both the deflections of the
vertical may provide important information regarding base ellipsoid settings.

5. Truncation Error Evaluation

The Neumann and the modified Vening Meinesz integrals are evaluated with
summations of the surface elements. In these numerical evaluations the following two
points must be considered for lessening computation errors. The first point is that, as
pointed out previously, the integral kernels become infinite as ¢ =0. The effect of the
neighborhood of a computation point P is predominant in both the Neumann and the
modified Vening Meinesz integrals. Therefore, it is necessary for high—accuracy
computations to reduce such an effect by modifying the integral formulas. The second
point is that the truncation error is caused by neglecting distant integration areas. Our
integral formulas involve integrations over the whole surface of the Earth, In practice,
however, integrations are extended only over a limited area.
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In order to reduce the neighboring effect around P, the Neumann and the modified
Vening Meinesz integral formulas are modified using convenient relations :

'/()-d/ifN , ¢ )eos ¢'de’ =0

cos @ (27}

2 ”dN(R, (’5) : beoniian
'/n. dA LT A . cos ¢'de¢”=0.
S @

They are readily proved, as the above integral kernels exclude the zero and first degree
terms in the spherical harmonic series. Eq. (27) is multiplied by dg(#, A) and the products
are subtracted from Eq. (18) and (24), respectively. Then we get

4;-7[ fN dglp, Allcos #'d¢’

&g, A) feosa (28)

:%f&dﬁ’ th(R,ji)* {0ald’, 2')—dg(8, A)lcos ¢'dy’. ‘
ayh o d¢ ‘
7(¢,4), sin @

When ¢ =0, P coincides with P, so that ¢ =¢" and A=A". Therefore, the kernels of Eq.
(28) become zero as ¢ =0. This works effectively for reducing the neighboring effect
around P.

Next it is necessary to evaluate the truncation effects of neglecting distant integra
—tion areas on the computation results of height anomaly and deflection of the vertical.
Assuming that the integrations are extended not over the whole surface of the Earth but
only up to a spherical distance ¢, (see Fig. 4), the truncation errors are given by

at(g, A) da i) 8gld’. A")—dgl$, A)lsin ¢d¢

d0¢(¢, 4) | fC0s€ . (29)
S| de [ VIR, ¢){85(#', ') —o(, Alsin 4dd,

dnle, 4)) L sin @ J

where cos ¢'d$’dA” in Eq. (28) is replaced by sin ¢ d¢/de and newly discontinous functions
are defined as:
0 for 0< ¢< ¢y
N(R, ¢)= (30)
N(R, ¢) for ¢o<¢=<g

Fig.1 Truncation area of a spherical cap centering at P with the
spherical angle .
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and

0 for 0<¢<¢y

VI(R, ¢)=

) _ dN(R, ¢) for po<¢<nm (31)
d¢ '
Mathematical treatments of an integral extended over the whole spherical surface
are in most cases much easier than those of an indefinite integral, particularly if the
kernels are expressed in forms of spherical surface harmonics. For determining the
truncated functions Eq. (30) and (31), they are expanded into a series of Legendre

polynomials :

N(R, ¢)=3 205

QnPnlcos ¢)

(32)

VR, )= 22 Lo poi(cos ¢),

where Q. and q, are truncation coefficients to be determined. The orthogonality
conditions of the Legendre and its associated functions are applied to Eq. (32}, and then
we get

Qo= [ "N(R, ¢)Pa(cos ¢)sin ¢dg

= fw "N(R, ¢)Pu(cos ¢)sin ¢dd, (33)
and similarly
QGn=— n+1fndN((:1}g{!r ¢) Pa'(cos ¢ )sin ¢dd. (34)

What is the relation between both the truncation coefficients Qn and q.¢ Partially
integrating Eq. (34) and using the recurrence formula of the Legendre polynomials :

sin ¢ d(igl +Pa'(cos ¢ )cos ¢=n(n+1)Palcos ¢)sin ¢, (35)

for n=1 we obtain

an=— 2y IN(R, $)Pa'(cos ¢ )sin ¢

i {Px{cos ¢ )sin ¢}de

=Qn+ 7 7N(R, ¢)Py'(cos ¢ )sin . (36)

(n+1)

This gives the relation between Qn and q.. Qn can be computed from g, and vice versa.

ilo,_
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Hagiwara (1972) first derived a similar relation regarding truncation coefficients of the
Stokes and the Vening—Meinesz integrals.
Eq. (34) is analytically obtained by the use of an expansion series :

¢ (1(ntm+1)!
2icom!(m+ 1) {n-—m—1)!

/)
Pa'(cos ¢)=cos sin 2 ; (37

Substituting Eq. (37) into Eq. (34) and taking Eq. (25) into account, for n=1 we obtain

1 ig)m(n-Fm)L[ 1 {]—thzm_l+(2m_l )tzm}

= T D) (m!)An—m)! | 2m—1
tm & \y2m+2 2m+4 .
Tt 1)(mEay 1 (m+2) 2+ (m+ 1)t }], (38)

where t=sin (¢0/2). Qn is computed by Eq. (36) from the obtained value of q. for cases
where n=1. In the special case of n=0, the direct integration of Eq. (33) becomes

Qo= t{1—-t)(2—3t—3t*) —2t%og t —2(1—t*)log (1+t). (39)

However, qo is not defined. Fig. 5 shows the behaviors of low—degree terms of (., and
dn. Round—off computation errors may increase cumulatively in the summation of the
power series up to a large number of n. Special consideration must be taken for reducing
computation errors in the computer program used.

-0.2

Fig.5 Truncation error coefficients of the Neumann integral (solid line) and the modified Vening
Meinesz integral (dotted line). (a) Qu, (b) Q2 and g2, (¢) Q2 and g, and (d) Q. and ..

11 ==
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Finally, inserting Eq. (32) into Eq. (29) and applying the orthogonality conditions of
the spherical harmonic functions, the truncation errors expressed in spherical harmonic
expansion series are obtained :

85(#, =55 2 Qban(4, 1)~ Qude(4, )}

GHB A\ L [abls, N/ ’ v

= Tyngzq”

su(4, A) Be#, 1)/ (cos ¢an))

The spherical harmonic expansion coefficients C,™ and S,™ of the geopotential, which are
derived from perturbation analyses of satellite orbit elements, can be used for computing
degn(é, A). The first formula of Eq. (40) indicates that the truncation error of the height
anomaly is evaluated by summing up the thus far obtained §g.(¢, A) with coefficients Q.
Similarly the truncation errors of the two components of deflection of the vertical are
evaluated by the second formula of Eq. (40). The mathematical procedure for deriving
these formulas will not be introduced herein, because it is essentially similar to one for
deriving the truncation error formulas of gravity anomaly. For this detailed derivation
procedure refer to Hagiwara (1976).

6. Inverse Problem

The GPS satellite distance—measuring technique makes it possible to determine the
ocean surface height above the ellipsoid. The static water surface forms an equipotential
surface. Although the real ocean surface is disturbed with currents, waves, atmospheric
pressure and temperature, etc., its topography can be approximated to the height
anomaly on the average. This fact indicates that the GPS technique can determine
directly the height anomaly in ocean areas. Independently of this technique, the height
anomaly can also be calculated from gravity disturbance data measured on the ocean
surface. If some systematic differences are found between these two height anomalies,
they may provide important information regarding the settings of the ellipsoid to the
Earth’s coordinates.

The inverse formula of the Stokes integral formula was first derived only out of
theoretical interest, but later it was actually applied in predicting approximately gravity
anomaly from the ocean surface topography measured in ocean areas where no gravity
measurements had been made. At that time many unobserved areas in a large part of
the Antarctic Ocean remained, but nowadays these gaps have been gradually filled with
sea—surface gravimetries. Notwithstanding, it will be of advantage to the GPS—gravity
combination surveys in ocean areas to derive a similar inverse formula of the Neumann
integral. The inverse Neumann formula involves an integration over the whole surface
of the Earth. The purpose of this section is to derive the inverse Neumann formula as
well as to formulate trucation errors resulting from the neglect of remote integration
ranges.

To begin with, we put r=R in Eq. (10) and divide both sides by ¥, and by taking
Bruns’ formula into consideration, we express the height anomaly in the spherical

_lzi
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surface harmonic expansion series :

If ¢ is expanded in a series of spherical surface harmonic functions of &, from Eq. (41)
we obtain

(n—H)

5gn(¢', /1) E;n({ls /1) (42)

The summation of both sides of Eq. (42) with respect to n=2 gives
sel, )= J{£(8. )+ Sntatg, D). (43)

Heiskanen and Moritz (1967) introduced a relation holding for an arbitrary function
F defined on the surface of a sphere, that is

;{H_./';anaj;nF((ﬁ’,/]’)éugF(gé, /i)bin d’dd’: = l]éninF“(qs’/i)’ (44)

where ¢,=2Rsin (¢/ 2). The last term of the righthand side of Eq. (43) has a similar form
to the righthand side of Eq. (44). The summation starts from n=0 in Eq. (44), but &, has
no terms of n=0 and 1. Replacing F by ¢, Eq. (43) is rewritten in a new form :

ot =T £, == [ Taa S XL Din gag). (15)

This is the inverse formula of the Neumann integral formula Eq. (18) for evaluating 8g
from the known distribution of ¢ on the Earth’s surface.

Eq. (45) involves a two —dimensional integration extended over the whole surface of
the Earth. Practically the integration is extended only over a limited area because the
kernal function seems to converge rapidly to zero with the distance from P. If the
integration range is limited to a spherical cap centered at P with a spherical distance ¢,
Eq. (45) is expressed by an integral formula in which the integration range 0= ¢ =71 is
replaced by 0=¢=¢,. The corresponding truncation error is expressed as

&6, )= 5 [da [ KOS, 2)—£(8, Dlsinddg, (46)

with a discontinuous function ;

¢ for 0=< ¢ < ¢y
o 1 (47)
Ssin(g/2) for he=¢=x.

In order to express e in a series of spherical surface harmonics similarly to Eq. (32),
the function K(¢) is expanded into a series of the Legendre polynomials :
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K(¢)=3} "L KaPalcos ¢), (48)
where by the orthogonality relation of the Legendre polynomials the coefficient Kan is
written as

Ke= [ K(¢)Pa(cos ¢ )sin ¢dé

_ 1 ("Pulcos ¢)

8 Jo, sin®(¢/ 2)

This equation indicates that K. can be determined as a function of the truncation angle

¢o. Substituting Eq. (48) into Eq. (46) and taking the orthogonality relation of the
Legendre polynomials into consideration, we obtain

sin ¢dé. (49)

e(p, N=%{Ko5(8, )= T Kuta(4, 2)}. (50)

It is noticed that this equation has a similar form of the first equation of Eq. (40).

Next the truncation error coefficient K, is formulated by solving the integral Eq.
(49). This integral is quite similar to an integral which appears in the derivation process
of the Stokes integral truncation error (Hagiwara, 1976). The zero and first degree
integrations are easily performed as

Ko= ; (l*coscc%')

(51)

Ki=Koi— (l—sin ﬂgn )
The general degree terms of K, can not be expressed by elementary functions. A
complicated integral, including the Legendre polynomials, sometimes takes on a much
simpler recursive form. Hagiwara (1976) proposed a method for computing K. by using
the following recursive formula :

_ PmJ_r_l(COS (,bu) _Pm—](CUS (},’0) (,-

Kaii 2Knt+Km1 = 2(21{1‘!' 1sin (Gf"o/ 2) 52)

Summing up both sides of Eq. (52), weighted by n- m from m=1 to n—1, we obtain the
general expression of Kp:

Kn:Ko—n(l—sin %")

-

- Esfmfém—g);;%]%{}’m-l(cos do) —Pu_1(cos da)). (53)

Theoretically K, can be computed by Eq. (33) even for a large number of n. In
practice, however, Eq. (53) creates an invalid solution for a large number of n due to
round - off errors cummlative in the summation of the Legendre polynomials. For a high
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degree term of K. Saito (1980) derived an asymptotic formula given by

_ sin {(n+1/2)¢o—x/4) /[2sin ¢ (
8(n+1)sin’*(¢o/ 2) nr -

K,z 54)
This formula indicates that K. is in the order of n *? and decreases to zero when n
becomes infinite.

It is a well known fact that, in cases of the Fourier analysis in the Cartesian
coordinates, the truncation of a function causes the Gibbs oscillating phenomenon. A
window function is sometimes used for reducing such a phenomenon. The truncation of
a spherical surface harmonic function behaves similarly to the Fourier case. The Gibbs
phenomenon in the spherical coordinates is a subject to be studied later to search for a
window function fitting to the spherical surface harmonic analysis.

7. Molodenskii Approach

Molodenskii et al. (1962) introduced the modern approach to physical geodesy. Inthe
conservative approach one must know the density distribution of the Earth’s interior
materials above the ellipsoid or make assumptions concerning it. The basic importance
of the Molodenskii approach was to prove that the physical surface of the Earth could
be determined from geodetic measurements alone without knowledge of the Earth's
density. This requires abandoning the ambiguous concept of the geoid. The technical
term of “height anomaly” was first used in their theory. It is very difficult, however, to
understand completely the Molodenskii theory because the mathematical formulation is
not only abstract but complicated. Heiskanen and Moritz (1967) proposed an approxima-
tion method of the Molodenskii theory by using the vertical derivative of the gravity
anomaly. Since then the Molodenskii theory has become more acceptable owing to
Heiskanen and Moritz’s excellent interpretations.

Molodenskii et al. (1962) gave an ellegant solution for the geodetic boundary—value
problem of the Earth's gravity potential field in a form of series Gu(n=1, 2, +++). They
showed that the first term G, is the conventional Stokes integral of gravity anomaly Ag,
but the higher terms are terrain corrections for the undulation of the Earth's surface.
The Molodenskii theory shows that the terrain correction is not related to the density of
the Earth’s materials. Taking only the first term into consideration, Heiskanen and
Moritz (1967) expressed the potential disturbance on the Earth's surface as the Stokes
integral ofdg+ G, instead ofdg.

On the analogy of the G, term in the Stokes integral, the Molodenskii approach can
be extended to the Neumann boundary—value problem for GPS—gravity combined
geodetic measurements. The gravity disturbance &g is actually measured on the
undulated Earth’s surface. Now a fictitious field of gravity disturbance Jdg* is assumed
on the ellipsoid as shown in Fig. 6. If one takes the spherical approximation, Eq. (18) is
rewritten here again with the new notation ;

_ R

£ D= OndA'fU”N(R, )8 (4, N cos ¢'d¢’, (55)

where {* is the fictitious height anomaly on the ellipsoid. However, a relation similar
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to Eq. (55) does not hold between dg and &, because the Earth’s surface is not assumed
to be spherical but undulated.

Analogically to the Molodenskii G: term in the Stokes integral formula, another
integral formula is defined :

€08, =[x [ N(R, ¢)8e(#', X)+Gal#', V)lcos #d¢. - 66)

The above G; term is different from the original Molodenskii term, but it is newly
defined with gravity disturbance as '

G1(¢,A)=§Hfoz"d4'fo"h£¢’ "')fé’h("s””ag(qs’, A)cos ¢'dd’, 57)

where h is the true height above the ellipsoid (see Fig. 6), and £,=2R sin (¢/2). In the
original Molodenskii formula, h and g in Eq. (57) are replaced respectively by the
normal height H and the gravity anomaly Ag.

On the other hand, Heiskanen and Moritz (1967) started their theory from the
vertical gradient of gravity anomaly. They assumed that the fictitious gravity anomaly
Ag* is approximated by an additional term concerning the vertical gradient of Jdg. A
similar approximation can be made to the relation between dg and dg*, that is

ser=og—h| BE| (58)

According to their theory, the vertical derivative of Jg is expressed as an integral
formula on the assumption that H dg/ R is a very small quantity. We can lead a similar
integral formula for our gravity disturbance :

2 2r o 4 ’ N __
Lo X [Tax [ 3g(¢"“£g 0e(d. ) g1y, (59)

Eq. (58) is rewritten with a new notation G, which was originally used by
Heiskanen and Moritz (1967), such as

SgFr=38g+ G (60)

Earth’s
surface

— ~—— Ellipsoid

Fig.6 The gravity disturbance, dg, is measured on the undulated
Earth’s surface. The ficitious gravity disturbance, §g*, can be
calculated from dg.
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Comparison between Eq. (58) and (60) gives Gi,= —h[adg/dr]:—x, then from Eq. (59) we
get

Gl dp=— zR;h(gﬁ, A)fnzrrd/l'fag(d”* A’)gozé?g(gb, Al gad. (61)

Substituting Eq. (60) into Eq. (55), we obtain

£*(8, )= gn [7ax [INR, $HS(#, 1)+ Giuld', A eos 4'd4" 62)
The geodetical importance of this formula is that one can compute the fictitious height
anomaly on the ellipsoid (“quasigeoid” by Molodenskii et al., 1962) from the height
anomaly actually measured on the Earth’s surface. The G, term eliminates the effect
of terrain undulation on the height anomaly.

In the same way as Eq. (58) holding for gravity disturbances, the fictitious height
anomaly {* can be written with its vertical derivative as

gr=g-n[ %] (63)

If the additional term is denoted by I'=—h[d¢/dr].—x and a contribution of F to the
gravity disturbance field by Gz, F can be written in a way similar to Eq. (62) as

F(g, == [l [N(R, 906 (8, 4 )eos $d4 (64)
Substituting £*=¢ +T into the lefthand side of Eq. (62), we get
2x T
£, =g [ aX [ NR 9)(86(#, 1)+ Guul¢', At Guald', X' )lcos 44"
(65)
Comparing Eq. (65) with Eq. (56), one finds G, = G111+ Gia.

Eq. (45) is the inverse formula of Eq. (18). In a similar way, the inverse formula of
Eq. (64) can be obtained in the form :

Gia( 9, A):%{F(QS, A)— % “Md/i’fF( b, A )g F(4, 4 )cus ¢’d¢'}, (66)

where sin ¢ d¢'de is replaced by cos ¢'d¢’dA.

The physical importance of Eq. (65) is that, if we divide the Molodenskii G, into two
parts, the first part, G, is a correction term to §g considering the vertical derivative of
gravity disturbance and the second part, G,z is a contribution of height anomaly
differences between ¢ and ¢* to the gravity disturbance field.

The fictitious components of deflection of the vertical, £* and 7*, on the ellipsoid can
be expressed in a similar way as shown above. The modified Vening—Meinesz integral
formula of gravity disturbance on the ellipsoid is written as

£ (g, A) . . coS @
=i ) ‘%f” (8a(6, A0+ Guld’, V)lcos #'dg".
7*(g, A) sin @ 67

i]’{ =1
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This integral formula corresponds to Eq. (62). The downward continuation of the two
components are approximately given by,
£ & [0&/0r]c—x
= —h . (68)
n* ] [07/01 )r-r

The second terms of the righthand side of Eq. (68) are not observable quantities, so that
they are reformed by using

o5 _ 2, dg

=Rt 5 (69)
which is obtained from differentiating the Bruns formula with respect to r. Here the
horizontal derivatives of y are neglected because they are very small. Differentiating
again both sides of Eq. (69) with respect to ¢ and A, and taking Eq. (21) into account, we
have

[6'5_] ZQEJF 1 adg
r-k R

ar ¥R 0f
(70)
] 2 .1 s
[ ar ]r:R R7’+ ¥R cos ¢0A
Substituting Eq. (70) into Eq. (68), we get
& ‘ £ o8 g/ o
=(1— ZI};) — ;{ . (71)
7t 7 g/ (cos pad)

Eliminating £* and #* in both Eq. (67) and (71) and neglecting 2h/ R in Eq. (71), we
obtain the final expression of the integral formula :

(g, A) cos a

— L [Tay [FNR.¢) (08(8, X)+Gul#', M))cos ¢'dg’
Ty Jo 0 d‘ﬂ' .
7(d, A) sin @

05g(p, A)/og
+h(¢’./1) ) (72)

6 e, A)/ (cos ¢al)

This integral formula has an additional term regarding the horizontal derivatives of
gravity disturbance. In the original Molodenskii approach the horizontal derivatives of
height anomaly appear instead of those of gravity disturbance. In practice, however, the
numerical computations of those of gravity disturbance are much easier because those of
height anomaly attain quite large values in steep terrains. Heiskanen and Moritz (1967)
proposed a more preferable formula including vertical derivatives of gravity anomaly. I
think that an equivalent method may possibly be applied to the Neumann boundary

__]8_
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—value problem.

Recently the Molodenskii theory has been reestimated by the use of the two
— dimensional fast Fourier transform (FFT) algorithm in the Cartesian coordinates
(Sideris, 1985 ; Sideris and Schwarz, 1986, 1988). The integral solutions of the height
anomaly and the deflections of the vertical are reformulated to obtain convolution
integrals in planar approximation. The local contributions to the Vening—Meinesz
integral are efficiently evaluated at rectangular grid points of gravity anomaly data
array (Zavattero, 1987). The spectral evaluation of the Molodenskii integrals in the
frequency domain and the related numerical computation method are reviewed in detail
by Schwarz et al. (1990). The methods presented in these papers can be used for the
Neumann problem with gravity disturbance.

8. Fourier Transform Method

The flat—earth approximation neglecting the curvature of the Earth’s surface can
be made for local gravity field calculations at rectangular grid points of the data in the
Cartesian coordinates. It has widely been recognized that such an approximation method
provides extremely efficient computations of integral formulas of physical geodesy, such
as the Vening —Meinesz and the Molodenskii integrals. The advantage of this method
is that most of these integral formulas can be expressed in the form of a two
—dimensional convolution integral which is efficiently evaluated by the Fourier
transform method in the frequency domain.

In recent years many papers have heen published formulating convolution integrals
of flat—earth physical geodesy (e.g. Forsberg, 1985; Vassiliou, 1988; Sideris and
Schwarz, 1988 ; Gleason, 1990 ; Schwarz et al., 1990). The availabhility of gridded gravity
and elevation data has resulted in the successful use of the 2—D Fourier transform
method for computing spatial deflections of the vertical by the Vening—Meinesz
convolution integral. When a great amount of data is available in gridded form, the use
of the FFT technique is clearly appropriate. The Molodenskii series solution is one of
the most interesting targets for physical geodesists to reformulate in a convolution form
and to use to evaluate the terrain correction terms with a combination of heights and
gravity anomalies. The original Molodenskii solution is simplified starting from the
analytical continuation to point level solution (Moritz, 1980).

In this section the modified Vening—Meinesz and Molodenskii integrals with gravity
disturbance in planar approximation are examined. A rectangular coordinate system(x,
y, z) is introduced, where the x, y and z—axis are pointing north, east and vertically
downward. The ground surface lies at z—0. The coordinates of an observation point P
and of a calculation point P” are (x, v, z) and (x', y', z’). By denoting wavenumbers
(angular frequencies) u and v with respect to the x and v—axis, we defline the 2—D
Fourier transform of an arbitrary space—domain function f(x, y) as

flu, V):fff(x, ylexp {—ilux+vy)ldx, dy, (73)
where 1 is the imaginary unit (i=+/—1). Inversely the function [(x, y) can be obtained

from its frequency—domain function f(u, v) by means of the inverse 2—D TFourier
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_ 1 = - =
f(x, v )74_,72‘ f(u, v)exp {i(ux+vy)}dudv. (74)

The interest is in formulating geodetic convolution integrals. By denoting two
arbitrary space—domain functions as g(x,y) and h(x,y), the following convolution
integral is defined as :

f(x, y):ffg(xfx', y—y h(x’, vy )dx'dy’. (75)

The frequency—domain expression of Eq. (75) has a very simple {form:
f(u, v)=g(u, v)hiu, v), (76)

where g and h are the 2—D Fourier transforms of g and h. Eq. (76) is readily derived
from Eq. (75). The proof can be found in textbooks of the Fourier transform.

On the basis of the mathematical background introduced here, most integral
formulas in spherical—ecarth physical geodesy can be reformulated. To begin with, the
upward continuation of gravity disturbance is discussed, which is assumed to be caused
by the spatial density distribution o inside the half—space (z=0). Allowing the distance
between two points P and P’ to be

0=/(x—x'P+ly—y VP+(z—2 7, (77)

we can write the potential disturbance as

T(x,y,z)= G'/:idz'f &’éy—’—z-)-dx'dy' (78)

(see Fig. 7). Differentiating T with respect to z, gravity disturbance is thus obtained :

sulx,v.2)=G [ (z/~2) déf ‘”‘1{,{ 2) S dy’. (79)

It is seen that both integrals of Eq. (78) and (79) have forms similar to that of Eq. (75),
h corresponding to p and g to 1/¢ in Eq. (78) and 1/¢* in Eq. (79). That is to say, Eq. (78)
and (79) are convolution integrals, which have forms similar to Eq. (76) in the frequency
domain. The 2—D Fourier transforms of 1/¢ and 1/¢° become respectively

A

Pix,y,z)

Fig.7T Cartesian coordinates of two points P and I’

— 20
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exp {—ilux+vy)} _ 2zexp (— lz—2' | VuP+v?)
ff /4yt (z— )zd xdy= Iy (80)
and
exp {—ilux+vy)} _ 2mexp(— |z 2’ |/ V2 } ;
ff ity + (=g P 7= E=rd @l

Thus the 2—D Fourier transforms of Eq. (78) and (79) can be noted as

272G Iy, v)exp (—zv/u+v?)

T(u, v,z)= ST = (82)
and
Sglu, v, z)=2xG T (u, v)exp (—zyu®+v?), (83)

where we define
—~ {1 - Tyg—
I(y, V):j:mp (u, v, 2 )exp (z/vu?+v? )dz'. (84)

Now assuming that z=0 in Eq. (82) and (83), we get
2nGI(u, v)

Jut vt

Ty, v,0)=

and
Sglu, v, 0)=272GT(u, v) (86)

Eliminating I in Eq. (82) by Eq. (85) and I in Eq. (83) by Eq. (86), very important relations
are obtained : '

T(u, v, z)=T(u, v, Dexp (—zv/u?+v?)
(87)
Sglu,v,z)=38g(u, v, 0)exp (—zvyu>+v*)
These formulas have forms similar to Eq. (76). Referring to Eq. (81), the inverse 2—D
Fourier transforms of Eq. (87) can then be derived as

T(X Y, Z)izﬁff X < £_(~_ny )O))z z}mzdxfdy’

(88)

O B xR
These formulas give a very important “upward continuation” relation between
values at the ground surface and at a certain elevation. If the surface values of T(x, y,
0) are known, one can calculate the space values of T(x,y,z) by means of the first
formula of Eq. (88). Similarly one can calculate §g(x, v, z) from 8g(x, v, 0). It is noticed
that T and § g satisfy the Laplace equation Eq. (3), and that these two formulas in Eq. (88)
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are solutions of the Dirichlet boundary—value problem in the Cartesian coordinates.

The kernels of the integrals in Eq. (88) become 1/ (272z%) when P coincides with P’,
ie.x=x"andy=y'. If z is very small, the kernels diverge to infinity in that case. In order
to avoid such a computational difficulty, Eq. (88) is modified by using a convenient
identity as follows :

ff z_fxydyy Y 72 }.n.z =1. (89)

By multipling both sides of Eq. (89) by T(x, v, 0) and dg(x, v, 0), the two formulas in Eq.
(88) can respectively be modified as:

ZH T(X V +0()y7 - ())g ¥ 20]?”9 dX’dY,

T(x,v,2z)=T(x,y,

(90)

i _ 2 ([ 8e(x,v,0)— og(x,y, 0
dg(x,y,z}—é‘g(x,y,ﬂ)l 27{']:[ {(X X)2+(\'_ )2. z}azd x'dy’

The modifications are similar to those of Eq. (28) by obtaining the height anomaly and
two components of deflections of the vertical by means of the Neumann and the modified
Vening—Meinesz integrals.

On the other hand, another important relation can be derived by eliminating I from
both Eq. (82) and (86), that is

exp (—zyw £v2) s o gy _ (91)

T(u,v,z)= T

Referring to Eq. (80), we obtain the space—domain expression of Eq. (91) as

dg(x’, ¥, 0) it ’
T(x,y,7)= ff/x o (92)

This corresponds to the Neumann integral Eq. (13), obtaining potential disturbance in
space from the known surface distribution of gravity disturbance. When ¢ is very small,
N(r, ¢)=2R/¢ as in Eq. (16). Then Eq. (13) is approximated by Eq. (92) in planar
approximation. By dividing both the sides of Eq. (92) by the normal gravity y at z=0),
the height anomaly is obtained through the Bruns formula as

_ Sglx’ } 0) o 2
: 3, dx'dy’. 93
£lx,v)= QETffv x—xVPrly—yr =
This formula corresponds to Eq. (18) for a spherical Earth.
Next we consider two components of diflections of the vertical for the flat earth
approximation. In the present case they are given by

__

£= ax
(94)

_ g

7= r‘jy_
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Differentiating Eq. (93) with respect to x and y, we obtain

’

XX
6 0 ’ ’
=507 ff el dx'dy’. (95)
7(x,y) i

£(x, y)

The integral kernel diverges infinitely when P coincides with P, ie. x=x" and y=v’.
Such a computational difficulty can be overcome by the following procedure. Using an
identity

’

X—X

i 1 o
_[Z{(T_ < }ZW dx'dy’ =0, (96)

y—y
multiplied by §g(x, y, 0) and subtracted the product from Eq. (95), we obtain a modified
form of Eq. (95).

£(x,y) x—x’

_ Sg(x’,y,0) —dalx,y,0) ’i
2ﬂ.},f (x - )z+(y y )z}:wz B dx’dy’. (97)

7(x, v) y—y

P

This formula can be used for practical numerical computations of two components of
deflection of the vertical in the Cartesian coordinates.
The Molodenskii G, term is also expressed by a formula similar to Eq. (97), that is

. _ 1 {{ hx,y)—h(xy) PN
Gl )= g J] o Py oy FOs, v daxay 98)

which corresponds to Eq. (57). The product of h and §g is defined as
u(x, y)=h(x, y)de(x, y), (99)

and then, using this new notation, Eq. (98) is divided into two integrals :

p(x, y') —plx, v) g
.2]1’./../- (X X )2‘+(V r)z}ayzdx d_v

Gulx, y)=

h(x V) dg(x’,y) —dglx, y)
ff (x—x P+ {y— y)}T"’dXdy (o0

It is readily noticeable that the first integral of the righthand side of Eq. (100) equals to
Gi. and the second one to Gi.. The obtained Molodenskii terrain correction term is
added to the deflection of the vertical calculated in the planar approximation. In rugged
terrain areas the Molodenskii correction works efficiently for reducing observed values
of deflection of the vertical to the surface of the ellipsoid.

It is found in this section that the planar approximation formulas in general have
mathematically simple forms and are much easier than spherical—surface formulas to be
dealt with. Very large sets of rectangular—gridded data can be used for the numerical
solution of geodetic integral formulas within the limits of present data accuracy by
means of a high—speed computation technique, such as FFT.

The disadvantage of the planar approximation method is, however, that, as long
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—wavelength gravity anomalies of low—degree wavenumbers are excluded essentially
from numerical solutions, calculated results (gravimetric deflection of the vertical) are
not exactly equal to absolute values of astrogeodetic deflection of the vertical. Despite
this disadvantage, shorl—wavelength undulations of local height anomaly are picked up
well by the calculation. The calculated values of gravimetric deflection can preferably
be used for the interpolation of absolute values astrogeodetically observed at the Laplace
stations (triangulation points). The Molodenskii correction consideration may be
neccessary for calculating deflections at triangulation points.

9. Conclusion

Recently several high—precision space techniques, such as VLBI (Very Long
Baseline Interferometry), SLR (Satellite Laser Ranging) and GPS have been applied to
geodetic measurements. In particular the portability of GPS receivers has made it
possible to cover scales of 1—100km with dense geodetic networks. Three—dimensional
vector separation can be obtained from GPS data, so that the GPS technique is now
taking the place of both conventional triangulation and leveling cechniques. Combination
surveys of GPS and gravity have recently been conducted in mountainous areas in Japan
because of the flexibility in selection of the stations.

The position of a point on the Earth’s surface determined by the GPS technique
directly refers to the geocentric coordinates of the Earth ellipsoid, whereas the leveling
height is measured above the geoid and the latitude and longitude determined by
triangulation surveys are based on a certain reference ellipsoid but not on the Earth
ellipsoid. The GPS technique also has a large impact on gravity studies. The
conventional geoid—based concept of gravity anomaly is now being replaced by this new
satellite geodetic system, and another quantity, “gravity disturbance”, will henceforth
play an important role on physical geodesy instead of gravity anomaly.

This paper has treated the geodetic boundary—value problems according to the new
geodetic system. In this case the Stokes and the Vening—Meinesz integral formulas are
reformulated in the Neumann and the modified Vening—Meinesz integral formulas using
gravity disturbance. We have discussed the inverse problem, in which gravity
disturbance is inversely obtained from the height anomaly and evaluated the truncation
error accompanied with numerical solutions. The Molodenskii terrain correction terms
have also been discussed for high—precision calculations of gravimetric height anomaly
and deflection of the vertical. Finally we have treated the planar approximation theory
based on a flat—shaped Earth in the Cartesian coordinates.
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