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The Climate Simulated by the JMA Global Model
Part 1: Global Feature
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Abstract

A 34-year simulation of the global atmospheric circulation has been performed
using the Japan Meteorological Agency (JMA) global model as an atmospheric general
circulation model (AGCM). The simulated climate is compared with observed climate.
It is found that the JMA global model is able to simulate the present global climate
reasonably well and can be used as an AGCM.
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1. Introduction

The Japan Meteorological Agency (JMA) global forecast model is used as an
atmospheric general circulation model (AGCM) at the National Research Institute for
Earth Science and Disaster Prevention (NIED). In the future this model is going to be
coupled with the Geophysical Fluid Dynamics Laboratory (GFDL) oceanic general
circulation model (OGCM) to develop a climate model for predicting the possibility of
future disasters.

The JMA model used at NIED is the current operational version of the global
forecast model at JMA. A description of the model is found in JMA (1993) and Sugi et
al. (1990). The model is known to perform well as a forecast model (JMA, 1993 ; Sugi
et al., 1990 ; Bourke ef al., 1991), but the performance of the model as a GCM has not

been fully investigated yet. The performance of the model as an AGCM needs to be
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examined before coupling it with OGCM.

In order to investigate the climate of the JMA global model, the T42/L21 (the
maximum zonal wave number is 42 and the number of vertical levels is 21) GCM version
of the model has been time-integrated for a period of 34 years. The observed sea surface
temperature from 1955 to 1988 was used as a boundary condition during the simulation.
The climate of the model is defined as a 34 year average of the monthly mean fields or
seasonal mean fields of the simulation. For the verification of the simulated climate, a
10 yvear average of the European Centre for Medium Range Weather Forecasting
(ECMWF) objective analysis for 1980-1989 is used. For precipitation, the observed
climate by Jaeger (1976) is used.

In this paper, the global features of the simulated climate are described. In the
second paper (Sugi ef a/. 1995), the simulated climate of tropical precipitation is present-
ed.

2. Geographical Distribution
2.1 Sea level pressure

The observed and simulated climates of the monthly mean sea level pressure for the
four months, January, April, July and October, are shown in Fig. 1(a) and 1(b), respec-
tively. The seasonal change of the geographical distribution of the sea level pressure is
fairly well simulated by the model. In January, however, both the simulated Aleutian low
and Siberian high are stronger than the observed ones. The simulated Aleutian low is
also stronger in April. In summer, the simulated Pacific subtropical high extends a little
too far westward, and the ridge line is located a little north of the observed location. The
simulated Atlantic subtropical high is elongated from the south-west to the north-east.
2.2 500 hPa height field

The observed and simulated climates of the monthly mean 500 hPa height field and
their differences are shown in Fig. 2. Large differences are found in the winter over the
Western Hemisphere with negative maxima over the west coast of Canada and the
North Atlantic and a positive maximum over the eastern part of Canada. This pattern
in the difference field corresponds to the weakening of the planetary wave in the model
over this region. The planetary wave ridge over the Rocky Mountains and the trough
over north-eastern Canada in the model are weaker than the observed ones. This
weakening of the planetary wave is commonly found in many models and referred to as

“zonalization” (Boer et al., 1991).
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In April, a large negative difference is found in the Eastern Hemisphere, over the Sea
of Okhotsk and and north-eastern Europe, where the simulated planetary wave trough
is deeper than the observed one.

In April, July and October, a negative difference is found over the region to the south
of New Zealand. In the observed 500 hPa height field, there is a diffluence over New
Zealand and a planetary wave ridge to the south of it. Such diffluence is not evident in
the simulated field.

2.3 850 hPa wind

The observed and simulated climates of the monthly mean 850 hPa wind are
displayed in Fig. 3. The geographical distribution and magnitude of the 850 hPa wind are
fairly well simulated by the model.

In January, however, the westerly wind over Siberia and the north-westerly wind
over North America are not well simulated. In July, the monsoon southwesterly wind
over the Arabian Sea is simulated very well, but the simulated monsoon flow extends too
far north-eastward along the Asian continent.

2.4 Stream function and velocity potential at 200 hPa

The observed and simulated climates of the stream function and velocity potential
at 200 hPa are shown in Fig. 4 and Fig. 5, respectively. The stream function at 200 hPa
is fairly well simulated by the model. In January, zonalization over North America is
noted. In July, the simulated Tibetan high and easterly jet to the south of it are a little
stronger than the observed ones.

The pattern of the velocity potential is also well simulated by the model, but the
magnitude of the simulated velocity potential is considerably larger than that of the
observed one. The gradient of the velocity potential, and therefore, the divergent wind
is stronger in the model, particularly over Africa and the central Pacific. It should be
noted, however, that the analyzed divergent wind is dependent on the model used for the
objective analysis. It is possible that the divergent wind in the ECMWF model used for
the objective analysis may not be so strong as that in recent models.

2.5 Precipitation

Fig. 6 shows both the observed (Jaeger, 1976) and simulated climates of the monthly
mean precipitation for January and July. The overall geographical distribution of
precipitation is well simulated. In January, however, excessive precipitation is simulated
along the storm tracks in the North Pacific and North Atlantic. In contrast, the intensity

of the simulated precipitation in July along the circumpolar storm track in the Southern
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Fig. 2-(a) Observed (top) and simulated (middle) 500 hPa height fields and

their differences (simulated minus observed, bottom) for Janu-
ary. Contour interval is 50 m.
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Fig.2-(b) Observed (top) and simulated (middle) 500 hPa height fields and
their differences (simulated minus observed, bottom) for April.
Contour interval is 50 m.
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Fig.2-(¢) Observed (top) and simulated (middle) 500 hPa height fields and
their differences (simulated minus observed, bottom) for July.
Contour interval is 50 m.
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Fig.2-(d) Observed (top) and simulated (middle) 500 hPa height fields and
their differences (simulated minus observed, bottom) for Octo-
ber. Contour interval is 50 m.
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Fig. 3-(a)  Observed (top) and simulated (bottom) 850 hPa wind for Janu-
ary. Contours show wind speed. Contour interval is 5 m/sec.
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Fig. 3-(b)

Observed (top) and simulated (bottom) 850 hPa wind for July.
Contours show wind speed. Contour interval is 5 m/sec.
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Fig.4-(a) Observed (top) and simulated (bottom) stream function at
200 hPa for January.
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Fig.4-(b) Observed (top) and simulated (bottom) stream function at
200 hPa for July.
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Fig.5-(a) Observed (top) and simulated (bottom) velocity potential at
200 hPa for January.
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Fig.5-(b) Observed (top) and simulated (bottom) velocity potential at
200 hPa for July.
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Fig. 6-(a) Observed (Jaeger, 1976, top) and simulated (bottom) precipita-
tion for January. Contours are 1, 2, 4, 8, ... mm/day. Areas
4 mm/day are shaded.
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Fig. 6-(b) Observed (Jaeger, 1976, top) and simulated (bottom) precipita-
tion for July. Contours are 1, 2, 4, 8, ... mm/day. Areas

4 mm/day are shaded.
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Hemisphere is less than of the observed. The simulation of the tropical precipitation is

described further in the second paper (Sugi ef al. 1993).

3. Zonal mean fields
3.1 Zonal wind

The latitude-height sections of the zonally averaged zonal wind are shown in Fig.
7. The observed and simulated climates are shown in Fig. 7(a) and 7(b), respectively, and
the difference between the two is shown in Fig. 7(c). The intensity of simulated subtropi-
cal jet streams (wind maximum near 200hPa)is larger than that of the observed one. The
simulated tropical easterly jet in July is also stronger than the ohserved one. In the
observed field of July, a jet core around 30°S and a double jet structure in the mid
~-troposphere are evident, but such structures are not clear in the corresponding simulat-
ed field.

The difference between the observed and simulated zonal winds is generally small in
the troposphere, but very large in the stratosphere. The large errors of zonal wind in the
stratosphere correspond to the large temperature errors there.

3.2 Temperature

The latitude-height sections of the zonally averaged difference between the obser-
ved and simulated temperatures are shown in Fig. 8. The simulated temperature is lower
than the observed temperature almost everywhere. In the lroposphere, the simulated
temperature is lower than the observed one by less than two degrees. At high latitudes
of the stratosphere, however, the simulated temperature is significantly lower than the
observed one.

3.3 Sea level pressure

The observed and simulated zonal mean sea level pressures are shown in Fig. 9. The
latitudinal distribution of the sea level pressure is fairly well simulated by the model,
including the deep circumpolar trough in the Southern Hemisphere.

3.4 Precipitation

The ohserved (Jaeger, 1976) and simulated zonal mean precipitation are shown in
Fig. 10. The latitudinal distribution of the precipitation is well simulated except for the
poleward area of 30°S. The model fails to simulate the large middle-latitude maximum
in the observation. On the other hand, the simulated precipitation in the middle-latitude

of the Northern Hemisphere is larger than the observed one.
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4. Summary and conclusions

The JMA global model has been used operationally for medium range weather
forecasting and it is known to have good performance as a forecast model (JMA, 1993
Sugi ef al., 1990 ; Bourke ef al., 1991). The 34 year time integration of a GCM version
of the JMA global model has revealed that the model is able to simulate global climate
reasonably well in the troposphere. Systematic errors such as a cool bias and zonaliza-
tion which are common in many GCMs (Boer ef al., 1991), are also found in the JMA
global model. In addition to these systematic errors, we have found some differences
between the simulated and observed climates, but the magnitude of the differences is
generally small and comparable to that of many other GCMs (Boer ef af., 1991).
Therefore, we may conclude that the performance of the JMA global model as a GCM
is comparable or superior to many other GCMs.

On the other hand, the simulated climate of the JMA global model in the strato-
sphere is not so good as in the troposphere. This is mainly because the top level of the
model where the variables are defined is too low and the vertical resolution is coarse in
the stratosphere. Thus, the stratosphere is not fully represented in the model. This may

be one of the major deficiencies of the JMA global model as a GCM.
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