足尾地域で発生する地震の震源特性

木下繁夫*·大池美保**

Scaling Relations of Earthquakes Occurring in the Ashio Region, Japan

Shigeo KINOSHITA* and Miho OHIKE**

* Yokohama City University,

Visiting Researcher of National Research Institute for Earth Science and Disaster Prevention, Japan Former : Advanced Technology Research Group, National Research Institute for Earth Science and Disaster Prevention, Japan ** Akashi Co.

Abstract

We developed source scaling relations which are applicable to the earthquakes occurring both in the Kanto region and the Ashio region as follows:

 $\log T_d = (0.223 \pm 0.003) \cdot \log M_0 \pm (3.529 \pm 0.036)$ $\log E_{\rm s} = \log M_0 - (5.174 \pm 0.475)$ $\log f_c = -3\log M_0 + (15.927 \pm 0.674)$ $\log[E_s/M_0] = (0.128 \pm 0.011) \cdot \log M_0 - (6.992 \pm 0.152)$

where T_d , M_{θ} , E_s and f_c stand for direct S-wave duration, seismic moment, seismic energy and corner frequency. This means that strong-motion prediction in the Ashio region is possible by using the earthquake data obtained in and around the Kanto region, although the earthquake size and observation setting are different in both regions.

Key words : Ashio region, Source scaling relations, Acceleration source spectrum, Strong-motion observation, Borehole recordings

1. はじめに

観測環境や地震発生環境の異なる地域で得られた震源 パラメータのスケーリング関係に整合性があるか否か は、応用上重要な問題であるが、スケーリング関係の推 定に伴う誤差が大きく、その考察には注意を要する.こ の推定誤差には、スケーリング関係を求めるために使わ れた基準観測点の選択が大きく影響している。例えば、 防災科学技術研究所(以下,「防災科研」と言う)の先 (新) 第三系基盤内 700 m~ 800 m の深さに設置した地 震計からの記録を推定の基準として得られるスケーリン グ関係と、先(新)第三系の露出花崗岩上に設置した地 震計からの記録を推定の基準として得られたスケーリン

グ関係を比較する場合、露出花崗岩のサイト特性をかな りの深さから考慮せねば真にスケーリング関係の整合性 があるか否かの議論が出来ないであろう.しかしながら、 実際にこの様な比較観測の環境を作ることは現実的では なかろう

とは言え、現実的に受け入れられる範囲内に2つのス ケーリング関係が整合すれば、スケーリング関係の応用 範囲は拡大される.即ち,観測期間内で小さな規模の地 震の記録のみしか得られなかった地域と、比較的大きな 地震の記録が得られた地域で得られた2つのスケーリン グ関係に充分整合性があれば、小さな地震しか発生しな かった地域において、比較的大きな地震が発生した場合、

*横浜市立大学,独立行政法人 防災科学技術研究所 客員研究員 (前:独立行政法人 防災科学技術研究所 防災基盤科学技術研究部門) **株式会社 アカシ

その震源パラメータや(加速度)震源スペクトルを容易 に推定することが出来,強震動予測の範囲を拡げること が可能となる.

本報告では、この様な立場から、関東地域で得られた 2 つのスケーリング関係の整合性について考察する. 一 つは、関東地域とその周辺域で発生した $M_0 = 10^{14} \sim 10^{19}$ (N·m)(M_x 3.3~6.6 相当)の地震から推定されたスケー リング関係であり、基準観測点を防災科研の下総深層井 (SHM)とするものである.他の一つは、関東地域北 縁部の足尾地域で発生した $M_0 = 10^{11} \sim 10^{14}$ (N·m) (M_x 1.3~3.3相当)の地震から推定されたスケーリング 関係であり、基準観測点を足尾古生層内40mの深さに速 度計を設置した観測点としている.

なお、関東地域とその周辺部で発生した地震のスケー リング関係については、Watanabe et al. (1996) や Kinoshita and Ohike (2003)の報告があるが、本報告で は、新たに得られた地震記録を追加して、スケーリング 関係を再計算し、付録にまとめている. このスケーリン グ関係の推定計算は、Kinoshita and Ohike (2003)と同 じである. 従って、本報告では、浅い地震観測井の記録 を基準観測点の記録としたとき、スケーリング関係を推 定するのにサイト補正が必要となる足尾地域のスケーリ ング関係を求める方法を主として述べることとする.

2. 足尾地域の地震観測とデータセット

足尾地域は、足尾山地の北西部に位置し、その周辺は 急峻な山岳地形となっている.足尾町を流れる渡良瀬川 は、この山岳地形を浸蝕し、北東から南西方向に流下し ている.足尾山地を構成する地質は、中生層・古生層の 地層とこれらに貫入したり噴出したりした酸性火成岩類 及び第三系及び第四紀の火山岩類である.

この足尾地域で発生している浅発地震は、大別して、 3つに分類されよう.第一は、栃木・群馬県境の皇海山 を中心とする地震、第二は、足尾町直下で、松木川・久 蔵川流域の地震、そして第三は内の籠断層沿いの地震で ある.防災科研では、これらの地震の調査のため、1987 年より強震観測網の建設を足尾町で行った.ここでは、 始めに、観測点の概要を述べ、次に、本報告で用いた地 震記録について述べよう.

2.1 強震観測

ここでは、足尾地域に建設した強震観測網を構成する 6 観測点について述べよう (図 2.1 及び 図 2.2 参照).

2.1.1 足尾微小地震観測施設(AS1観測点:36.6321° N,139.4646°E,栃木県上都賀郡足尾町4245)

AS1 観測点は、足尾観測網の中で最初に建設された観 測点であり、先第三系の足尾古生層に属する露出チャー ト岩に地震計用コンクリート基礎を打ち付け、基礎上に (株)アカシ製負帰還型加速度換振器 V401 の 3 成分型 を1987年に設置した.その後、施設内に(株)東京測 振製 VSE-11/12型速度計が設置され、二つの換振器出力 が(株)東京測振製 16 ビット型の収録器 SAMTAC-16X に接続されている.収録器の標本化周波数は 200 Hz, 15 sの遅延装置を有している.V401型加速度計からの 信号は、30 Hzのアナログ型低域通過フィルタを通した 後収録器に接続され、測定可能加速度 327Gal(1 Gal = 10mm/s²)に設定されている.また、VSE-11/12型速度計 は、最大測定速度 4 cm/s である.

Fig. 2.1 Locations of the strong-motion observation stations in the Ashio region, central Japan.

2.1.2 足尾地震地下水実験場(AS2 観測点: 36.6149° N, 139.4033°E, 栃木県上都賀郡足尾町字峠 3658)

AS2 観測点は、先新第三系の沢入(そうり) 花崗閃緑 岩帯の露出域に建設した観測点である. ここでは、15m の観測井を掘削し、その孔底に(株)東京測振製負帰還 型加速度計 SA-355 を埋設している. AS2 観測点は, 元々, 2,000 mの井戸を用いた水圧破壊実験のために建 設された観測点であり、その過程で井戸を用いた速度検 層が行われている. これによれば, AS2 観測点では, 地表1m未満の表土を除いて、およそ140m迄、平均S 波速度 2.2 km/s である. 140 m以深の平均 S 波速度は, 480 m迄, およそ 3.2 km/s となっている. AS2 観測点の 観測開始は、1989年であり、15m井の加速度計と地表 に設置された SA-355 型加速度計が同一の収録器 SAM-TAC-16X に接続されている. その後, 地表の加速度計 は、VSE-11/12 型速度計に更新されている。観測井孔底 に設置された SA-355 型加速度計は、専用の帰還増幅器 を通して収録器に接続されているが、最大測定加速度は 200Gal に設定されている. なお, VSE-11/12 型速度計の 信号は, 最大測定速度 20 cm/s である.

2.1.3 足尾地殻活動観測施設(AS3観測点: 36.6247°N, 139.375°E,栃木県上都賀郡足尾 町湖南国有林 245 班ぬ小班内)

AS3 観測点は、AS2 観測点から渡良瀬川の支流餅ヶ 瀬川をおよそ 5 kmさかのぼった地点に建設されている. この地域は、沢入花崗閃緑岩の分布域であり、AS3 観 測点では 50 mの観測井が掘削されている. AS3 観測点 での地質は、地下 3.2 m迄が表土であり、以下、沢入花 崗閃緑岩が孔底迄連続する. 観測井を用いた速度検層に よれば、25 m~50 mの区間速度が、S 波及び P 波で、 各々、3.1 km/s 及び 5.3 km/s に達している. これらは、 地殻上部での数値であり、AS2 観測点と対比すれば、 AS2 観測点の 140 m以深が, AS3 観測点の 25 m以深に 対応しよう、この観測点では、孔底に3成分型の V401 型加速度計が、3.2 mに VSE-355J 型速度計が、各々、設 置され、これらの出力信号が(株)アカシ製16ビット 型の SMAC-MD 型収録器に接続されている. 記録は, 加速度信号が最大測定加速度 500 Gal, 速度信号が2.5 cm/s で、200 Hz で標本化されている、記録器の特性は、 コーナ周波数が 30 Hz である. AS3 観測点での観測開始 は1992年である.

2.1.4 足尾南橋強震観測点(AS4 観測点: 36.6597°N, 139.4481°E,:栃木県上都賀郡足尾町南橋字阻)

AS4 観測点は、足尾地域の基盤岩である先第三系の 古生層に属する粘板岩帯に建設されている. この観測点 には、粘板岩中を 40 m掘削した観測井を有している. 観測井の地質は、深さ 8.3 m迄が表土部分であり、それ 以深は暗灰色の粘板岩となっている.速度検層によれば、 32 m~40 mの粘板岩における S 波及び P 波速度は、 各々、2.7 km/s 及び 5.3 km/s の区間速度を示している. AS4 観測点における 40 m井の記録は、足尾地域の調査 研究では、その基準となる観測点である。AS4 観測点 における強震観測は、1993 年から開始されているが、 40 m井孔底には(株)東京測振製 VSE-355J 型速度計が 設置され、(株)東京測振製 16 ビット型収録記 CV-910 に接続されている。また、後に、地表に VSE-11/12 型速 度計が設置され、その出力も CV-910 に接続されている。 最大測定速度は、地中・地表とも 40 cm/s で、200 Hz で 標本化されている。

2.1.5 足尾神子内強震観測点(AS5: 36.6655°N, 139.4779°E,栃木県上都賀郡足尾町字片衣1719)

AS5 観測点は、足尾地域に孤立して分布する先新第 三系の深沢花崗閃緑班岩帯に建設された観測点で、深さ 36 m迄掘削した観測井を有している. AS5 観測点は、 足尾町南東部に発する内の籠断層が北東側の渡良瀬川と 交わる地域に存在し、観測井は断層破砕帯中に掘削され ている. これは、観測井の掘削に伴って、コアが殆ど砂 状に変形することからも判る. 観測井の地質は、深さ 10 m以深が深沢花崗閃緑班岩であり、速度検層の結果で は、この部分の S 波及び P 波速度は、各々、1~1.5 km/s 及び 2~3 km/s となっている. AS5 観測点の観測 開始は 1997 年であり、観測井孔底に設置された VSE-355J 型速度計と地表に設置された VSE-11/12 型速度計 が、16 ビット型の CV-910 型収録器に接続されている. 最大測定速度は、地中で 200 cm/s、地表で 40 cm/s であ り、200 Hz で標本化されている.

2.1.6 K-NET足尾観測点 (ASK: K-NET を構成する観 測点の中の TCG010 観測点)

この観測点は、全国 1,034 か所に強震観測点を有する K-NET(Kinoshita, 1998)の1観測点である. 観測点 では、地表に(株)アカシ製 K-NET95型強震計(木下・ 他,1997)が設置されている.最大測定加速度 2,000 Gal, 標本化周波数 100 Hz,有効周波数帯域 30 Hz(コーナ周 波数 30 Hz以上で -18 dB/oct.の減衰特性を有する)で、 24 ビット型の記録が得られ、インターネット上で記録 が公開されている(http://www.bosai.go.jp または http://www.k-net.bosai.go.jp).

2.2 データセット

本報告では、2種類のデータセットを扱っている. 一つは、比較的入射角の小さい遠地地震の記録であり、これは、3.2で述べる観測点のサイト増幅特性考察のために用いるものである. このデータセットを構成する地震の震源分布を図2.2に、地震緒元を表2.1に示す. また、記録例として図2.3を示そう. もう一つのデータセットは、足尾地域で発生する地震の震源パラメータを考察するためのものであり、データセットを構成する地震の震源分布を図2.4に、地震緒元を表2.2に示す. また、記録例を図2.5に示そう.

3. 方法

ここでは、加速度震源スペクトルと震源パラメータの スケーリング関係と求める方法について示そう.そのた めには、準備段階として以下の2つのことを示さねばな

	Origin time	•	Latitude	Longitude	Depth	M_{JMA}	Region name
Year	Date	Time	(N)	(E)	(km)		
1994	0123	1543	36.321	140.082	69.3	4.4	SW IBARAKI PREF
1994	0619	0812	36.251	140.119	52.6	4.1	SW IBARAKI PREF
1994	0629	1101	34.958	139.869	53.2	5.2	SOUTHERN BOSO PENINSULA
1994	1104	1906	36.077	139.910	47.3	4.3	SW IBARAKI PREF
1995	0107	2134	36.322	139.959	63.9	5.4	SW IBARAKI PREF
1995	0323	0724	36.124	140.004	50.4	4.9	SW IBARAKI PREF
1996	0611	1425	35.981	140.083	65.9	3.9	SOUTHERN IBARAKI PREF
1996	1012	2036	36.115	139.659	91.4	4.7	SW IBARAKI PREF
1996	1124	0740	35.780	140.135	71.1	4.4	NORTHERN CHIBA PREF
1997	0106	0821	36.210	140.133	48.4	3.9	SW IBARAKI PREF
1997	0211	0333	36.290	139.744	67.8	3.7	SW IBARAKI PREF
1997	0323	1458	35.981	140.119	70.4	5.0	SOUTHERN IBARAKI PREF
1997	0328	0954	36.242	139.798	55.8	3.7	SW IBARAKI PREF
1997	0606	1809	36.101	139.871	46.3	3.8	SW IBARAKI PREF
1997	0701	1800	36.085	139.883	46.8	3.9	SW IBARAKI PREF
1997	0709	1836	35.555	140.156	74.3	4.6	CENTRAL CHIBA PREF
1997	0809	0534	35.838	139.474	65.9	4.7	EASTERN SAITAMA PREF
1997	0822	1711	36.160	140.095	67.1	4.1	SW IBARAKI PREF
1997	0908	0840	35.539	139.984	107.7	5.2	CENTRAL CHIBA PREF
1997	1129	0939	36.068	139.920	44.5	4.3	SW IBARAKI PREF
1997	1206	1540	35.698	140.119	51.1	4.6	CENTRAL CHIBA PREF
1998	0126	1116	35.924	139.525	63.6	3.9	EASTERN SAITAMA PREF
1998	0308	1346	36.095	139.866	49.2	4.4	SW IBARAKI PREF
1998	0608	0802	36.112	139.901	49.7	3.8	SW IBARAKI PREF
1998	0624	2352	36.145	140.100	68.0	4.6	SW IBARAKI PREF
1998	0715	0709	36.101	139.910	47.4	4.4	SW IBARAKI PREF
1998	0829	0846	35.609	140.055	63.6	5.1	CENTRAL CHIBA PREF
1998	1108	2140	35.611	140.052	75.5	4.6	CENTRAL CHIBA PREF
1999	0627	1950	36.116	139.788	48.6	4.1	SW IBARAKI PREF
1999	0809	0639	35.840	139.940	111.5	4.4	NORTHERN CHIBA PREF
1999	0913	0756	35.566	140.160	77.1	5.0	CENTRAL CHIBA PREF
1999	1227	0005	36.163	139.869	49.5	4.0	SW IBARAKI PREF
2000	0815	0354	36.212	140.049	51.7	3.9	SW IBARAKI PREF
2000	0909	2048	36.041	139.628	64.3	4.2	EASTERN SAITAMA PREF
2001	0420	0144	36.082	139.775	62.5	4.0	SW IBARAKI PREF
2001	0531	0859	36.185	139.814	54.7	4.5	SW IBARAKI PREF
2001	0925	0435	36.311	140.105	71.0	4.3	SW IBARAKI PREF
2001	1002	2302	35.895	139.500	77.0	3.7	EASTERN SAITAMA PREF
2001	1018	0630	36.094	139.865	45.8	4.3	SW IBARAKI PREF

表 2.1足尾地域の観測点の相対増幅度特性を考察する為に用いた地震Table 2.1Earthquakes used in the determination of site amplification factors of the Ashio array sites.

図 2.4 足尾地域の地震の震源特性を考察する為に用いた地震の震源分布 Fig. 2.4 Locations of earthquakes used for studying the source characteristics of Ashio region earthquakes.

1999/10/17 18:28 NS

図 2.5(a) 足尾地域で発生した地震の例.1999年10月17日の地震の記録:南北成分記録 Fig. 2.5(a) Seismograms recorded at the Ashio array sites for the earthquake of October 17, 1999: NS-components.

図 2.5(b) 足尾地域で発生した地震の例.1999年10月17日の地震の記録: 東西成分記録 Fig. 2.5(b) Seismograms recorded at the Ashio array sites for the earthquake of October 17, 1999: EW- components.

1999/10/17 18:28 UD 0.5 AS1 Vel.[cm/s] 0 -0.5 0.2 AS2 Vel.[cm/s] 0 -0.2 0.5 AS3 Vel.[cm/s] 0 -0.5 0.5 AS4 Vel.[cm/s] 0 -0.5 AS5 Vel.[cm/s] 0.2 0 -0.2 ASK Vel.[cm/s] 0.5 0 -0.5 10 20 15 25

図 2.5(c) 足尾地域で発生した地震の例. 1999 年 10 月 17 日の地震の記録:上下動方向記録 Fig. 2.5(c) Seismograms recorded at the Ashio array sites for the earthquake of October 17, 1999: UD-components.

																																			Т
Duration	(s)	0.35	0.78	0.62	0.34	0.10	0.26	0.34	0.35	0.17	0.36	0.17	0.34	0.39	0.20	0.19	0.19	0.39	0.52	0.28	0.28	0.30	0.44	0.28	0.25	0.29	0.31	0.18	0.34	0.22	0.38	0.25	0.59	0.28	
Δσ	(MPa)	0.270	0.164	0.302	0.144	1.351	0.855	0.813	1.092	0.302	1.340	2.891	0.599	0.416	1.453	1.259	0.394	0.097	0.326	0.475	0.718	1.114	2.206	0.567	1.461	0.379	0.179	0.187	0.178	18.441	0.266	0.673	1.708	0.790	
σ_A	(MPa)	0.083	0.051	0.196	0.051	0.165	0.283	0.208	0.361	0.088	0.333	0.765	0.204	0.129	0.262	0.256	0.186	0.035	0.112	0.124	0.231	0.505	0.829	0.189	0.321	0.140	0.069	0.055	0.057	2.285	0.076	0.188	0.410	0.254	
Es	(L)	3.749E+07	5.091E+07	4.887E+08	5.857E+07	1.580E+06	1.539E+08	9.925E+08	6.599E+08	6.028E+06	2.723E+08	5.542E+07	1.754E+08	4.396E+08	1.485E+07	1.589E+07	1.008E+08	7.983E+07	2.426E+08	3.525E+07	1.618E+08	1.557E+08	4.072E+08	3.198E+07	3.325E+07	2.572E+07	2.472E+07	6.744E+06	1.736E+07	3.364E+08	3.508E+07	2.545E+08	2.273E+10	8.461E+07	
Fc	(Hz)	4.35	2.82	2.55	2.58	26.88	6 <u>.</u> 01	2.86	4.35	8.47	60.9	17.66	4.58	2.56	15.24	14.08	4.65	1.80	2.75	6.12	5.21	7.93	8.53	7.72	12.49	6.57	4.11	5.95	4.32	25.85	4.29	4.09	1.62	6.89	
Mo	(N-M)	1.515E+13	3.373E+13	8.364E+13	3.871E+13	3.218E+11	1.823E+13	1.601E+14	6.129E+13	2.294E+12	2.744E+13	2.428E+12	2.879E+13	1.144E+14	1.899E+12	2.083E+12	1.813E+13	7.713E+13	7.244E+13	9.567E+12	2.353E+13	1.033E+13	1.646E+13	5.686E+12	3.472E+12	6.170E+12	1.194E+13	4.112E+12	1.022E+13	4.936E+12	1.552E+13	4.541E+13	1.857E+15	1.115E+13	()
M _{JMA}		3.5	4.3	4.1	3.6	1.8	<u>3.0</u>	3.7	3.5	2.4	3.3	2.6	3.2	3.3	2.6	2.5	2.6	3.4	3.4	<u>3.0</u>	2.8	3.1	3.4	2.8	3.0	2.4	2.5	2.4	3.3	2.9	3.5	3.0	4.0	3.1	
Depth	(km)	7.1	9.0	6.9	8.3	6.8	3.9	5.8	10.8	9.5	8.1	7.8	9.4	4.1	9.6	8.8	8.8	8.0	8.2	10.7	10.1	10.4	7.2	9.1	7.4	7.1	10.1	12.4	7.4	11.8	3.9	9.6	11.7	9.2	
Longitude	(E)	139.332	139.332	139.328	139.357	139.423	139.328	139.286	139.280	139.396	139.326	139.317	139.313	139.345	139.350	139.330	139.353	139.351	139.340	139.338	139.341	139.343	139.343	139.348	139.417	139.361	139.497	139.511	139.437	139.182	139.450	139.337	139.531	139.430	
Latitude	(N)	36.669	36.668	36.677	36.664	36.636	36.659	36.635	36.629	36.589	36.652	36.642	36.658	36.680	36.670	36.647	36.678	36.677	36.674	36.674	36.676	36.673	36.667	36.631	36.691	36.690	36.629	36.586	36.658	36.601	36.653	36.699	36.694	36.642	
	Time	1528	0211	1636	1637	0851	0850	0915	1314	1027	1724	1555	1037	2037	0250	0021	1722	2328	0949	0723	0729	0743	0625	0332	1230	1354	0614	1624	2225	0824	1423	0450	1720	0743	
Origin time	Date	1012	1020	1114	1114	0106	0107	0311	0311	0331	0917	0105	0118	0408	0411	0711	6060	0910	0922	1020	1023	1122	1229	0128	0204	0312	0711	0802	0212	0721	0807	0825	0922	0425	TOLO
	Year	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1991	1991	1991	1991	1991	1992	1992	1992	1992	1992	1993	

Duration	(s)	0.25	0.36	0.28	0.26	0.30	0.19	0.17	60 [.] 0	0.20	0.20	0.15	0.13	0.25	0.22	0.26	0.33	0.18	0.14	0.13	0.29	0.26	0.15	0.20	0.25	0.13	0.17	0.32	0.20	0.19	0.20	0.11	0.10	C F C
Δσ	(MPa)	0.915	0.139	1.159	1.805	0.498	1.040	1.507	3.478	0.318	0.982	0.840	2.669	1.362	1.290	0.928	1.112	1.154	1.432	2.256	0.645	2.895	0.846	1.133	0.665	1.985	0.864	0.192	0.543	1.637	0.736	0.857	0.906	1106
σ⊾	(MPa)	0.284	0.038	0.414	0.405	0.146	0.275	0.459	0.475	0.106	0.263	0.138	0.490	0.402	0.342	0.202	0.341	0.224	0.452	0.641	0.255	066.0	0.127	0.391	0.263	0.353	0.188	0.051	0.175	0.305	0.255	0.167	0.191	0 616
Es	(r)	8.664E+07	3.148E+07	7.225E+08	1.029E+08	1.543E+08	1.461E+07	5.098E+07	9.845E+06	1 499E+07	1.540E+07	7.557E+06	1.831E+07	1.586E+08	1.227E+08	1.126E+08	1.814E+08	2.241E+07	3.891E+07	3.549E+07	2.888E+08	6.047E+08	5.236E+06	9.320E+07	9.141E+07	2.324E+07	8.518E+06	5.645E+07	2.812E+07	5.937E+07	6.575E+07	9.240E+06	2.750E+06	20121030
Fc	(Hz)	7.46	2.85	4.51	9.93	4.02	13.92	12.32	28.51	6.78	13.23	12.83	21.43	7.81	7.92	6.12	6.61	11.68	13.19	17.78	4.28	8.68	14.14	8.69	6.41	16.09	13.81	2.89	7.76	10.50	7.33	12.86	20.55	15 11
Mo	(N-m)	1.021E+13	2.785E+13	5.851E+13	8.522E+12	3.553E+13	1.783E+12	3.723E+12	6.943E+11	4.719E+12	1.960E+12	1.837E+12	1.253E+12	1.322E+13	1.203E+13	1.870E+13	1.782E+13	3.351E+12	2.888E+12	1.855E+12	3.801E+13	2.048E+13	1.385E+12	7.983E+12	1.165E+13	2.205E+12	1.518E+12	3.687E+13	5.372E+12	6.535E+12	8.628E+12	1.860E+12	4.824E+11	
M _{JMA}		3.0	3.1	3.4	2.8	<u>3.0</u>	2.5	2.4	2.0	2.5	2.4	2.5	2.1	2.8	2.9	2.8	3.1	2.4	2.1	2.1	3.1	2.9	2.4	2.5	2.7	2.2	2.6	<u>3.</u> 0	2.5	2.4	2.8	2.2	1.6	с с
Depth	(km)	7.1	9.1	6.8	10.2	8.5	<u>8.3</u>	<u>9.6</u>	8.7	8.5	8.7	10.0	9.8	10.2	9 <u>.</u> 6	9.5	8.4	10.7	10.6	10.4	8.4	10.2	12.1	10.9	9.5	12.5	10.4	9.6	8 <u>.</u> 3	13.0	10.1	10.4	9.9	
Longitude	(E)	139.381	139.483	139.413	139.484	139.329	139.333	139.436	139.338	139.334	139.438	139.415	139.486	139.481	139.488	139.485	139.496	139.482	139.485	139.488	139.492	139.485	139.384	139.493	139.484	139.485	139.501	139.507	139.498	139.493	139.484	139.401	139.417	
Latitude	(N)	36.598	36.635	36.729	36.669	36.691	36.699	36.621	36.697	36.693	36.620	36.614	36.648	36.659	36.662	36.661	36.663	36.655	36.663	36.656	36.670	36.666	36.572	36.673	36.672	36.664	36.679	36.673	36.697	36.663	36.671	36.622	36.611	
	Time	1346	2155	1815	2135	1044	2349	0315	0000	1712	1736	2058	2250	0805	1310	1904	1119	1621	2039	0018	0019	0524	0328	1359	0222	2241	1726	1551	1554	1628	1125	0056	0538	0100
Origin time	Date	0626	0719	0724	0926	1009	1116	1120	0107	0206	0221	0227	0310	0314	0314	0314	0315	0315	0319	0320	0405	0729	0806	0826	9060	9060	0911	0913	0913	0921	0923	0927	1002	1000
	Year	1993	1993	1993	1993	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1001

_							1	1		1	1						1				1		1												-
Duration	(s)	0.10	0.17	0.27	0.24	0.24	0.12	0.23	0.19	0.21	0.17	0.18	0.28	0.15	0.23	0.14	0.24	0.27	0.31	0.25	0.13	0.12	0.13	0.25	0.13	0.13	0.17	0.17	0.19	0.23	0.29	0.20	0.33	0.19	
Δσ	(MPa)	4.537	0.798	1.094	0.263	0.520	2.001	0.798	1.073	0.792	0.591	064.0	0.509	0.579	1.861	4.178	2.609	0.722	2.412	0.565	2.205	101.1	2.250	1.070	0.150	1.459	0.874	3.509	1.184	0.788	0.667	0.406	0.508	2.404	0 5 0 5
σ _A	(MPa)	1.299	0.166	0.314	0.085	0.140	0.301	0.172	0.416	0.169	0.113	0.160	0.137	0.126	0.404	0.563	0.748	0.297	0.563	0.134	0.329	0.171	0.289	0.244	0 <u>.</u> 038	0.221	0.202	0.638	0.195	0.162	0.184	0.100	0.154	0.433	00100
Es	(r)	5.416E+07	2.350E+07	4.199E+08	3.083E+07	7.976E+07	9.444E+06	1.561E+07	8.457E+07	1.842E+07	4.645E+06	3.515E+07	6.354E+07	1.133E+07	1.004E+08	1.786E+07	2.055E+08	1.413E+08	2.698E+08	3.204E+07	4.843E+07	6.377E+06	1.153E+07	4.459E+07	1.048E+06	6.541E+06	3.264E+07	8.144E+07	1.616E+07	7.147E+07	2.824E+08	1.638E+07	3.924E+08	1.096E+08	L0. TL00 0
Р С	(Hz)	24.67	9.20	4.83	4.64	5.01	20.64	10.66	00 [.] 6	10.01	12.56	6.76	5.33	9.61	10.11	26.28	10.94	5.94	8.85	6.88	12.73	15.95	19.82	9.31	90 [.] 00	18.95	9.07	15.59	12.54	6.27	3.91	6.99	3.02	10.94	FC L
Mo	(M-M)	1.397E+12	4.742E+12	4.483E+13	1.215E+13	1.910E+13	1.052E+12	3.043E+12	6.811E+12	3.645E+12	1.378E+12	7.342E+12	1.555E+13	3.016E+12	8.320E+12	1.064E+12	9.213E+12	1.594E+13	1.607E+13	8.026E+12	4.939E+12	1.254E+12	1.337E+12	6.135E+12	9.299E+11	9.918E+11	5.414E+12	4.279E+12	2.777E+12	1.476E+13	5.152E+13	5.495E+12	8 534E+13	8.487E+12	1 7575 10
MUMA		1.9	2.6	3.1	2.8	2.8	1.8	2.6	2.6	2.6	2.3	2.4	2.8	2.3	2.8	2.3	2.8	2.0	3.1	2.9	2.6	2.2	2.2	2.8	2.2	2.0	2.5	2.7	2.6	2.8	3.2	2.6	3.3	2.7	۰ ۲
Depth	(km)	10.1	10.1	9.2	8.6	9.8	10.2	10.2	10.2	10.0	7.3	7.1	12.3	10.2	10.1	9.6	9.2	9 <u>.</u> 8	12.0	9.1	10.1	10.1	8.2	10.1	3.4	10.6	9.1	10.4	5.0	10.1	8.4	9.6	8.0	10.3	C () F
Longitude	(E)	139.496	139 430	139 493	139.497	139.491	139.480	139.486	139.485	139.483	139.392	139 409	139.489	139 481	139.482	139.492	139.313	139.477	139 494	139 461	139.482	139.479	139.346	139 442	139.317	139.477	139 315	139.490	139.500	139 471	139 485	139 462	139.501	139.489	100 001
Latitude	(N	36.666	36.602	36.653	36.655	36.656	36.654	36.651	36.668	36.651	36.618	36.637	36.671	36.634	36.640	36.644	36.622	36.653	36.650	36.630	36.652	36.645	36.708	36.552	36.614	36.648	36.622	36.654	36.663	36.639	36.642	36.632	36.653	36.655	76 610
	Time	0219	0648	2027	2028	2037	1912	1703	0537	6000	1258	1031	2341	0136	0413	0821	0440	0741	1107	2027	0630	1255	0108	1442	0254	0404	1140	2239	0856	1237	0542	0934	2249	0953	ORE1
Origin time	Date	1004	1004	1007	1007	1007	1011	1013	1020	1113	1123	1124	1129	1201	1202	1202	1209	1212	1212	1218	1225	1231	0101	0104	0115	0118	0123	0131	0227	0301	0303	0303	0319	0321	0320
	Year	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1005

Duration	(s)	0.20	0.25	0.49	0.34	0.31	0.35	0.37	0.26	0.36	0.21	0.24	0.74	0.23	0.22	0.26	0.30	0.20	0.13	0.26	0.22	0.28	0.27	0.33	0.19	0.27	0.13	0.15	0.14	0.14	0.20	0.19	0.19	0.21
Δσ	(MPa)	2.838	1.053	0.307	1.335	0.050	0.580	0.145	1.186	1.715	1.730	0.820	0.510	2.529	3.029	1.143	0.370	1.732	0.794	0.820	0.782	1.298	0.164	1.247	0.277	1.817	1.174	1.182	0.290	1 455	0.365	0.704	0.750	0.184
σA	(MPa)	0.903	0.335	0.097	0.341	0.021	0.208	0.089	0.278	0.523	0.369	0.189	0.162	0.508	0.609	0.238	0.099	0.293	0.162	0.360	0.225	0.368	0.040	0.294	0.053	0.297	0.180	0.182	0.055	0.234	0.068	0.146	0.239	0.065
Es	(L)	1.532E+08	1.389E+08	1.056E+09	5.597E+08	5.700E+06	4.763E+08	9 343E+07	2.216E+08	1 308E+09	9.242E+07	7 545E+07	4.250E+09	2.266E+08	2.717E+07	9.081E+07	4.288E+07	3.649E+07	1.751E+07	2.683E+08	4.463E+07	5.527E+07	1.574E+07	4.872E+08	5 527E+06	6.860E+07	8.756E+06	6 596E+06	4.064E+06	1.357E+07	3.214E+06	1.566E+07	2 936E+07	1 530E+06
Fc	(Hz)	13.22	7.05	1.57	4.82	2.97	3.27	2.68	5.90	4.56	9.84	6.56	1.39	9.21	21.07	7.45	4.90	12.42	10.04	5.33	8.16	10.60	3.86	4.70	7.15	10.28	14.93	16.52	8.18	15.12	10.22	9.67	9.45	10.29
Mo	(N - N)	5.685E+12	1.389E+13	3.661E+14	5.501E+13	8.914E+12	7.669E+13	3.501E+13	2.676E+13	8.383E+13	8.402E+12	1.342E+13	8.816E+14	1.495E+13	1.496E+12	1.278E+13	1.458E+13	4.180E+12	3.629E+12	2.502E+13	6.655E+12	5.040E+12	1.315E+13	5.558E+13	3.505E+12	7.743E+12	1.631E+12	1.213E+12	2.456E+12	1.945E+12	1.579E+12	3.599E+12	4.111E+12	7.837E+11
MJMA		2.8	2.8	4.0	3.2	2.8	3.6	3.3	2.9	3.3	3.1	2.9	4.2	2.9	2.8	2.9	3.0	2.8	2.5	3.1	2.8	3.0	2.8	3.2	2.6	2.9	2.3	2.4	2.2	2.6	2.6	2.6	2.7	2.6
Depth	(km)	7.5	9.9	5.3	7.2	8.5	7.5	7.1	8.8	1.2	11.1	8.8	1.2	9.4	11.4	5.3	10.3	8.5	9.9	5.8	0.6	9.4	7.9	3.5	9.8	8.9	7.5	8.3	9.9	10.6	7.8	8.4	9.8	10.3
Longitude	(E)	139.456	139.479	139.430	139.436	139.432	139.497	139.500	139.477	139.328	139.360	139.476	139.327	139.494	139.475	139.450	139.487	139.339	139.471	139.452	139.490	139.514	139.481	139.443	139.454	139.327	139.324	139.324	139.337	139.480	139.439	139.369	139.493	139.453
Latitude	(N)	36.730	36.636	36.633	36.631	36.635	36.634	36.644	36.641	36.679	36.562	36.636	36.845	36.622	36.634	36.586	36.657	36.672	36.634	36.740	36.634	36.672	36.633	36.627	36.634	36.696	36.690	36.688	36.647	36.649	36.632	36.576	36.637	36.630
	Time	0658	0918	1115	2110	0933	2013	1718	1614	1509	1641	1157	1523	1149	0938	0608	0512	1409	0408	2006	0517	0750	2207	0256	0954	1014	1305	0337	2134	2351	1425	0247	0416	1334
Origin time	Date	0528	0531	0707	0707	0709	0718	0804	0805	0816	0819	0827	0901	0905	0925	0927	1016	1025	1027	1107	1117	1212	1226	0201	0203	0203	0203	0211	0219	0229	0303	0312	0323	0419
	Year	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996

														_																					_
Duration	(s)	0.20	0.27	0.20	0.24	0.17	0.23	0.26	0.19	0.30	0.14	0.31	0.31	0.26	0.38	0.20	0.15	0.23	0.15	0.23	0.23	0.20	0.11	0.27	0.31	0.14	0.18	0.10	0.17	0.23	0.34	0.27	0.20	0.23	0 13
Рd	(MPa)	0.196	0.592	0.552	0.403	0.184	0.492	0.325	0.255	4.206	0.531	0.652	1.365	0.537	0.504	1.990	0.386	0.537	1.541	0.380	0.344	0.481	0.506	0.397	0.347	3 <u>.</u> 250	1.388	3.441	0.987	0.650	1.503	0.531	2.274	0.614	0.607
ح ک	(MPa)	0.054	0.183	0.125	0.111	0.051	0.143	0.088	0.075	1.604	0.129	0.176	0.291	0.163	0.133	0.234	0.085	0.113	0.241	0.088	0.164	0.103	0.094	0.112	0.068	0.422	0.517	0.908	0.200	0.144	0.367	0.164	0.366	0.149	0.162
Ľ	(ſ)	1.049E+07	1.923E+08	1.548E+07	9.109E+06	3.115E+06	2.339E+07	1.937E+07	6.543E+06	1.185E+10	9.284E+06	9.049E+07	2.022E+08	1.456E+08	3.188E+08	8.917E+06	5.806E+06	1.837E+07	5.716E+06	3.062E+07	2.993E+07	1.189E+07	2.855E+06	1.683E+07	3.315E+07	2.398E+07	4.172E+07	5.593E+07	1.483E+07	1.477E+07	1.104E+09	1.457E+08	5.670E+07	6.543E+07	5.480E+06
, -	(Hz)	5.19	4.27	8.51	8.79	7.46	7.46	5.89	7.39	4.28	10.07	5.60	6.47	4.36	3.07	19.30	9.21	7.70	20.77	5.33	6.39	8.31	13.19	7.14	4.61	19.90	13.34	19.75	12.25	9.57	4.10	4.35	12.65	5.77	13.53
2	(N-M)	6.499E+12	3.516E+13	4.150E+12	2.746E+12	2.047E+12	5.477E+12	7.376E+12	2.926E+12	2.478E+14	2.404E+12	1.720E+13	2.328E+13	2.998E+13	8.059E+13	1.279E+12	2.285E+12	5.437E+12	7.951E+11	1.161E+13	6.102E+12	3.875E+12	1.020E+12	5.033E+12	1.634E+13	1.907E+12	2.704E+12	2.064E+12	2.482E+12	3.427E+12	1.008E+14	2.984E+13	5.191E+12	1.474E+13	1.135E+12
		2.7	2.9	2.6	2.6	2.5	2.8	2.8	2.6	3.6	2.4	3.3	3.3	2.8	<u>3.</u> 3	2.5	2.4	2.6	2.2	2.7	2.6	2.5	2.1	2.8	3.3	2.5	2.8	2.3	2.4	2.7	3.3	3.0	2.8	2.9	2.5
nepru	(km)	9.7	8.7	9.8	9.6	10.2	9.2	10.0	7.7	8.7	9.6	5.3	9.7	8.6	8 <u>.</u> 3	11.2	9.8	10.7	9.2	9.9	7.9	10.2	9 <u>.</u> 8	9.6	9.8	12.6	7.5	10.1	9.8	8.8	8.5	9.9	13.7	6.5	10.9
FUIBILING	(E)	139.453	139.460	139.454	139.453	139.455	139.461	139.461	139.446	139.468	139.460	139.383	139.408	139.459	139.457	139.447	139.447	139.451	139.305	139.507	139.344	139.312	139.382	139.380	139.433	139.384	139.417	139.295	139.298	139.452	139.510	139.507	139.500	139.380	139.352
Lautude	(N)	36.631	36.630	36.630	36.630	36.629	36.626	36.630	36.625	36.626	36.630	36.539	36.544	36.624	36.621	36.586	36.635	36.625	36.662	36.647	36.644	36.672	36.615	36.548	36.608	36.712	36.714	36.646	36.641	36.643	36.646	36.650	36.649	36.600	36.575
	Time	2307	0036	0458	1710	1713	0040	0544	1948	0309	1439	0232	1211	0348	0831	0931	0729	0315	2347	0325	2053	0114	1425	1638	1454	1707	0636	2259	0627	0650	1603	1324	2256	0645	1528
Urigin time	Date	0419	0420	0421	0422	0422	0423	0423	0430	0509	0510	0515	0525	0613	0706	0710	0712	0802	0817	0828	0912	1011	1030	1227	0123	0125	0223	0308	0310	0316	0412	0422	0422	0426	0503
		9	9	6	9	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97

表 2.2 Table 2.2

Duration	(s)	0.25	0.35	0.18	0.15	0.26	0.20	0.28	0.13	0.11	0.17	0.14	0.19	0.12	0.23	0.25	0.23	0.20	0.19	0.18	0.19	0.23	0.23	0.17	0.18	0.24	0.11	0.22	0.13	0.16	0.17	0.16	0.27	0.11	0.10
Δσ	(MPa)	1.853	0.276	0.374	1.551	0.544	1.822	2.310	6.025	4.264	0.368	3.783	5.209	2.433	0.358	0.741	0.199	0.188	0.212	0:030	0.346	0.286	0.016	0.265	1.065	0.393	1.760	0.036	0.453	0.101	0.416	0.277	0.185	1.752	0.570
σ_A	(MPa)	0.394	0.071	0.098	0.251	0.224	0.412	0.399	0.612	0.497	0.123	1.011	0.899	0.446	0.099	0.231	0.056	0.046	0.069	0.009	0.087	0.079	0.007	0.062	0.221	0.086	0.151	0.010	0.061	0.022	0.098	0.059	0.040	0.261	0.084
Es	(N)	7.472E+07	1.122E+08	1.321E+07	1.651E+07	1.323E+08	7.859E+07	9.906E+07	3.182E+07	3.791E+07	1.650E+07	4.253E+08	6.601E+07	1.558E+07	2.267E+07	3.754E+07	5.214E+06	4.194E+06	8.740E+06	1.490E+05	1.240E+07	2.144E+07	8.926E+05	6.976E+06	4.263E+07	6.925E+06	2.650E+06	1.876E+06	1.311E+06	1.798E+06	1.616E+07	2.746E+06	1.116E+07	7.311E+06	3.516E+06
Fc	(Hz)	11.04	2.88	7.27	14.81	5.03	10.97	10.86	25.19	19.76	7.24	10.75	21.39	21.26	<u>6.00</u>	8.57	6.65	6.58	6.14	6.25	6.93	5.27	2.60	6.89	9.14	8.76	24.01	2.93	14.24	5.54	7.02	9.35	4.49	20.50	12.33
Mo	(N-M)	6.364E+12	5.330E+13	4.499E+12	2.206E+12	1.981E+13	6.390E+12	8.331E+12	1.743E+12	2.554E+12	4.485E+12	1.410E+13	2.462E+12	1.171E+12	7.645E+12	5.449E+12	3.127E+12	3.059E+12	4.231E+12	5.760E+11	4.798E+12	9.060E+12	4.207E+12	3.748E+12	6.453E+12	2.706E+12	5.882E+11	6.603E+12	7.257E+11	2.750E+12	5.554E+12	1.564E+12	9.459E+12	9.402E+11	1.406E+12
MUMA		2.8	3.2	2.6	2.4	2.9	2.7	2.9	2.5	2.6	2.7	2.5	2.6	2.5	2.9	2.9	2.8	2.7	2.8	2.5	2.8	2.7	2.6	2.5	2.7	2.7	1.7	2.1	2.2	2.4	2.5	2.6	2.9	2.2	2.2
Depth	(km)	13.3	7.7	9.1	13.1	7.5	12.3	13.2	12.7	12.2	9.2	13.0	12.7	12.0	9.5	9.4	9.1	7.7	7.5	9.2	10.7	9.6	9.9	10.9	10.9	9.2	20.4	8.7	12.5	6.0	9.5	8.3	8.8	10.1	10.0
Longitude	(E)	139.383	139.451	139.442	139.372	139.472	139.384	139.381	139.382	139.379	139.444	139.385	139.380	139.382	139.331	139.444	139.452	139.348	139.345	139.389	139.391	139.486	139.478	139.408	139.443	139.426	139.385	139.456	139.418	139.465	139.396	139.399	139.455	139.485	139.478
Latitude	(N)	36.704	36.626	36.625	36.709	36.627	36.713	36.713	36.715	36.709	36.622	36.715	36.715	36.713	36.705	36.623	36.617	36.662	36.662	36.608	36.607	36.639	36.642	36.642	36.572	36.633	36.539	36.651	36.636	36.647	36.610	36.610	36.673	36.657	36.641
	Time	0304	1810	0014	1341	0248	2202	0853	0034	0509	2307	2054	0556	0936	0413	1441	1442	0839	1028	2133	2139	0454	2107	0224	0522	0556	1427	0344	0419	2320	2236	1547	1810	1626	1310
Origin time	Date	0508	0513	0514	0514	0519	0525	0531	0601	0601	0601	0614	0615	0616	0620	0624	0624	0704	0704	0712	0712	0718	0722	0807	0820	0904	0905	1001	1005	1010	1014	1017	1030	1031	1102
	Year	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997	1997

ation	s)	32	27	30	22	47	23	15	23	46	24	23	67	11	19	70	18	27	12	23	60	15	38	19	32	23	18	26	23	76	25	28		Z A
Dur		Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0	0		5
Δσ	(MPa)	0.955	0.540	1.487	0.086	0.614	1.120	0.116	0.252	0.178	0.431	0.717	0.254	0.199	0.226	0.415	0.235	0.239	0.114	0.491	0.079	0.089	0.058	0.088	2.422	0.438	0.465	0.578	0.141	0.207	0.451	0.347	0360	0000
σ_{A}	(MPa)	0.232	0.145	0.443	0.019	0.152	0.219	0.019	0.067	0.048	0.092	0.128	0.043	0.030	0.064	0.097	0.058	0.063	0.024	0.141	0.012	0.025	0.014	0.026	0.535	0.099	0.097	0.089	0.035	0.039	0.174	0.085	0.025	0000
Es	(r)	1.636E+08	7.342E+07	2.357E+08	2.127E+06	7.488E+08	1.425E+07	4.289E+05	4.720E+06	6.677E+07	5.298E+06	1.411E+07	8.915E+08	1.468E+05	4.498E+06	4.528E+09	2.559E+06	1.683E+07	1.785E+05	3.281E+07	6.736E+04	6.859E+05	1.484E+07	2.344E+06	1.984E+08	5.358E+06	6.117E+06	8.581E+06	2.998E+06	1.268E+09	4.198E+07	5.072E+07	9 700E+07	2./ UUL ' U/
Fc	(Hz)	5.72	5.28	7.28	4.74	2.58	13.35	8.91	7.91	2.60	10.11	9.65	1.19	17.78	7.61	1.07	9.04	4.97	12.90	6.62	12.65	7.67	1.96	5.15	9.66	10.38	10.07	9.38	6.11	0.96	6.36	4.31	5 10	0+0
Mo	(M-M)	2.365E+13	1.699E+13	1.785E+13	3.732E+12	1.647E+14	2.176E+12	7.571E+11	2.357E+12	4.706E+13	1.931E+12	3.690E+12	6.971E+14	1.637E+11	2.371E+12	1.567E+15	1.469E+12	8.990E+12	2.454E+11	7.824E+12	1.808E+11	9.120E+11	3.551E+13	2.973E+12	1.244E+13	1.810E+12	2.106E+12	3.239E+12	2.846E+12	1.079E+15	8.092E+12	2.009E+13	1 070E+13	
MUMA		3.2	2.8	3.1	2.6	3.7	<u>3.0</u>	2.3	2.7	3.4	2.8	2.9	4.1	2.1	2.5	4.1	2.6	3.1	2.3	2.8	1.8	2.3	3.2	2.5	3.3	2.7	2.7	3.0	2.7	4.1	2.9	3.2	31	
Depth	(km)	7.5	9.8	7.0	9.2	8 <u>.</u> 0	10.4	8.8	9.2	2.4	11.2	12.0	4.4	7.5	9.5	4.7	8.6	4.9	8.3	8 <u>.</u> 6	8.4	8.3	7.7	5.9	10.5	8.8	9.6	8.4	10.5	7.3	9.1	8.7	10.2	101
Longitude	(E)	139.541	139.453	139.322	139.508	139.434	139.429	139.420	139.426	139.394	139.357	139.356	139.439	139.435	139.434	139.445	139.436	139.442	139.427	139.429	139.423	139.427	139.443	139.476	139.363	139.378	139.376	139.372	139.433	139.387	139.371	139.442	130 506	
Latitude	(Z	36.669	36.638	36.653	36.705	36.635	36.624	36.631	36.638	36.788	36.560	36.564	36.631	36.642	36.641	36.636	36.627	36.646	36.643	36.627	36.637	36.634	36.633	36.680	36.560	36.718	36.717	36.714	36.643	36.715	36.721	36.643	36 505	2000
	Time	0038	1525	0014	1426	1828	1829	1837	1843	0615	1023	0928	2228	2241	2244	2247	2250	2251	2300	2312	2321	2351	1224	0019	2241	2257	0119	1618	1026	0443	2300	0447	2145	
Origin time	Date	0414	0510	0724	0805	1017	1017	1017	1017	1101	1209	1210	1216	1216	1216	1216	1216	1216	1216	1216	1216	1216	1218	0108	0109	0123	0124	0126	0129	0206	0217	0430	0802	1000
	Year	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	

Duration	(s)	0.66	0.13	0.28	0.22	0.13	0.63	1.98	0.40	0.46	0.34	0.62	0.34	0.25	0.29	0.34	0.23	0.18	0.28
Δσ	(MPa)	2.122	1.000	0.363	0.778	0.522	0.071	0.556	0.564	0.694	0.198	0.557	0.244	2.063	0.652	0.483	7.801	0.718	1.642
σÅ	(MPa)	0.428	0.368	0.084	0.213	0.074	0.033	1.395	0.233	0.278	0.068	0.180	0.079	0.477	0.225	0.131	1.577	0.224	0.427
Es	(r)	2.254E+09	1.531E+07	2.111E+07	3.819E+07	9.237E+05	4.759E+08	6.459E+10	5.122E+08	4.319E+08	1.471E+08	1.714E+09	9.031E+07	1.519E+08	2.743E+08	1.344E+08	3.021E+08	5.684E+07	1.857E+08
Fc	(Hz)	3.82	14.91	5.84	8.43	17.97	0.88	1.18	3.28	3.95	2.32	2.01	3.09	9.63	4.19	4.01	17.78	7.31	8.05
Mo	(N - m)	1.767E+14	1.395E+12	8.445E+12	6.003E+12	4.163E+11	4.900E+14	1.553E+15	7.380E+13	5.209E+13	7.303E+13	3.188E+14	3.832E+13	1.067E+13	4.093E+13	3.452E+13	6.421E+12	8.510E+12	1.458E+13
MJMA		4.0	2.6	2.9	3.0	2.4	3.8	4.9	3.5	3.5	<u>3.</u> 3	3.9	3.4	<u>3.0</u>	3.2	3.5	<u>3.</u> 0	2.3	3.1
Depth	(km)	4.4	10.4	9.5	9.5	10.0	0.2	1.6	4.3	3.3	5.0	1.4	8.0	8.3	7.3	8.1	12.2	12.2	8.4
Longitude	(E)	139.719	139.491	139.445	139.355	139.433	139.384	139.388	139.386	139.371	139.382	139.376	139.453	139.520	139.361	139 463	139.289	139.386	139.554
Latitude	(N	36.910	36.670	36.642	36.600	36.650	36.812	36.816	36.812	36.818	36.819	36.809	36.638	36.702	36.629	36.656	36.615	36.711	36.741
	Time	1625	1608	1734	1143	1118	0425	6090	0612	0617	0200	1730	0831	1205	0908	1116	0543	0327	1433
Origin time	Date	1019	1026	0112	0223	0314	0331	0331	0331	0331	0331	0401	0421	0608	0829	0928	0103	0109	0118
	Year	2000	2000	2001	2001	2001	2001	2001	2001	2001	2001	2001	2001	2001	2001	2001	2002	2002	2002

足尾地域で発生する地震の震源特性-木下・大池

らない.一つは,地震記録上で直達 S 波(本報告では, SH波に限定する)部分を決定する方法であり,他の一 つは,足尾地域の6観測点間の相対的増幅特性の決定で ある.これらは,点震源から射出された S 波の加速度震 源スペクトルを,震源距離 r において,

$$A(f,r) = G(f) \cdot P(f,r) \cdot S(f)$$
(3.1)

と記述したとき、スペクトルを計算するデータ長と、 G(f) に対する拘束条件を与えて、式(3.1)から P(f,r) とS(f) を最小自乗的に求めるために必要 とする. なお、式(3.1)において、G(f)、P(f,r)及びS(f) は、各々、サイト効果(ここでは、サイ ト増幅特性)、経路効果及び震源ファクタとする.

3.1 直達 S 波の継続時間, T_d

本報告では、McCann and Shah (1979)の方法を基に、 直達 S 波の継続時間 T_a を求める.方法を 図 3.1 に示す 例を用いて説明しよう.図 3.1 の下図は、原記録である AS1 観測点の加速度原記録を速度記録に積分したもの である.必要ならば、速度記録を帯域通過フィルタに通 し、表面波を押さえる操作が要求されるが、足尾の記録 の場合、その必要はなさそうである.下図の速度記録 を $\{v_b(n)\}$ としよう.図 3.1 の中央の図は、

 $e(n) = [v_b^2(n) + H^2\{v_b(n)\}]$

から計算される包絡波形である. 但し, $H\{v_b(n)\}$ は $v_b(n)$ の Hilbert 変換とする. 最後に, この包絡波形 $\{e(n)\}$ を用いて, 累積実効値

$$c(k) = k^{-1} \left[\sum_{n=1}^{k} e^{2}(n)\right]^{1/2}$$

を計算する. 直達S波の立ち上がり点は, 視察により 決定するが, その継続時間 T_d は, この図を用いて決定 する. 即ち, 包絡波形が示すパルスの幅, 或いは, 累 積実効値列がS波の到着と伴にエネルギが増加し続け る時間とする. 図3.1の例では, 図中に示した2本の細 線で決められる時間をもって, T_d の推定値としている. このとき, エネルギ・スペクトルが帯域通過フィルタ のバンクを用いて計算され, 図3.2に示すスペクトルと なる. この平方根が, 式(3.1)のA(f,r)スペクトル 表示となる. なお, 本報告では, 1/3 オクターブ分割で スペクトルの計算を行っている. これは, 帯域通過フ ィルタの中心周波数を F としたとき, 帯域幅 が $B = (2^{1/2n} - 2^{-1/2n}) \cdot F$, n = 3 となるフィルタである.

3.2 相対サイト増幅特性

通常用いられる方法では、式(3.1)のP(f,r)と S(f)は、G(f)に対して何らかの拘束条件を課す ことにより求められる.ここでは、足尾地域6観測点 の中から、基準観測点として、G(f)が最も小さく なる観測点を採用し、他の観測点の基準観測点に対す る相対増幅度特性求める方法を示そう.勿論、基準観 測点のG(f)は、全周波数で2とする(但し、5. 考察では、基準観測点が観測井となるため、その周波 数特性を補正する). この方法は, Yoshimoto *et al.* (1993) が,最初,足尾地域の先(新)第三系観測点のサイト特 性を高周波数域で評価するために用いたものである.即 ち,図2.2 及び表2.1 に示すような遠地地震の記録を用 い,特定観測点を指定し,これに対する他の観測点のス ペクトル比をもって相対増幅度特性とするものである. 但し,用いる地震は,全ての観測点の震源距離が100 km 程度以上となり,全ての2 観測点での震源距離が1%未 満となるようなものとする.また,観測点への入射角が 可能な限り小さくなる地震を選定する.

3.3 伝播経路の 1/Q_s(f),加速度震源スペクトル,及 び,震源パラメータ

式(3.1)において、伝播経路特性は次式で与えられよう.

$$P(\mathbf{r},f) = (\rho\beta/\rho_o\beta_o)^{1/2} \cdot \mathbf{r}^{-1} \cdot \exp[-\pi f\mathbf{r}/\{Q_s(f)\cdot \mathbf{v}\}] (3.2)$$

ここで、 $Q_s(f)$ は、伝播経路における S 波の Q 特性、 vは経路の平均伝播速度 3.4km/s である. また、 $\rho\beta$ と $\rho_0\beta_0$ は、各々、震源域と基準観測点でのインピーダン ス (密度と S 波速度の積) とする.

同様に, 震源ファクタS(f) は次式で与えられよう.

$$S(f) = P_a \cdot R_{\theta\phi} \cdot (2\pi f)^2 \cdot \overline{M}_0(f) / (4\pi\rho\beta^3)$$
(3.3)

ここで, P_a は, S 波が SH 波と SV 波から構成されるの に対し,式(3.1)を SH 波で代表させるため,S 波工 ネルギの分割を補正する為に必要とするもので, $1/\sqrt{2}$ となる. R_{60} は,平均的放射パターンを示す係数で,本 報告では,0.6とする. $\dot{M}_0(f)$ は,モーメント関数 $M_0(t)$ の微分形の Fourier変換とする. $\dot{M}_0(f)$ が求まれば, ω^2 モデルに基づくコーナ周波数 f_c とモーメント M_0 は,次 式のフィッテイングから得られる.

$$f^{2}\overline{M}_{0}(f) = M_{0}f^{2}/(1+f_{c}^{2}/f^{2})$$
(3.4)

また, 地震エネルギは *E*, は, Vassiliou and Kanamori (1982) により, 次式で与えられる.

$$E_{s} = K \cdot \int_{-\infty}^{\infty} \left| 2\pi f \cdot \dot{M}_{0}(f) \right|^{2} df \qquad (3.5)$$

ここで、係数 K は、次式となる.

 $K = (15\pi\rho\alpha^2)^{-1} + (10\pi\rho\beta^5)^{-1}$

また, Brune のストレス・ドロップ(Brune, 1970)及 び見かけ応力は, 各々, 以下で計算されよう.

$$f_c = 4.9 \times 10^6 \beta \left(\Delta \sigma_R / M_0 \right)^{1/3}$$
(3.6)

$$\sigma_A = \mu E / M_0 \tag{3.7}$$

さて,ここでの最後として,実際にA(f,r)から P(f,r)とS(f)を求める方法を示しておこう. i番目 の地震に対し, j番目のサイトで得られたA(f,r)を $A_{ij}(f,r_{ij})$ としよう.このとき,式(3.1)は,次式となる.

$$\left|A_{ij}(f,r_{ij})\right|^{2} = \left|G_{j}(f) \cdot P(f,r_{ij}) \cdot S_{i}(f)\right|^{2} / T_{ij}$$
(3.8)

図 3.1 直達 S 波の区間を決定するための処理手順 Fig. 3.1 An example of processing the direct S-wave window:(bottom) velocity seismogram, (middle) envelope seismogram and (top) cumulative R.M.S. function.

ここで, r_{ij} は, *i* 番目の地震に対する*j* 番目のサイトの 震源距離, T_{ij} は*i* 番目の地震において*j* 番目のサイトで 観測された T_{a} とする.このとき,P(f,r)と $S_{i}(f)$ は, 各周波数毎に,以下の最小自乗誤差を最小とする値とし て推定される.

$$\varepsilon^{2}(f) = \sum_{i=1}^{M} \sum_{j=0}^{N_{i}-1} \left[\ln \left| A_{ij}(f, r_{ij}) \right|^{2} - \ln \left| \hat{A}_{ij}(f, r_{ij}) \right|^{2} \right]^{2}$$
(3.9)

ここで、 \hat{A} は予測子 A に対する観測値とし、 $M \ge N_i$ は、各々、地震の総数とi 番目の地震に対して観測記録 が得られたサイトの数とする、j=0 が基準観測点であ ることは言うまでもない。

4. 結果

4.1 直達S波の継続時間

まず,図2.4 及び表2.2 に示した地震について,3.1 の方法で得られた直達S波の継続時間と地震モーメント の関係を図4.1 に示そう.地震モーメント *M*⁰の決定は 3.3 で述べた方法による.図中,〇印が得られた結果で あり,*M*₀-*T*_dの関係は,

$$\log T_d = (0.205 \pm 0.007) \cdot \log M_0 - (3.270 \pm 0.087)$$
(4.1)

となる. なお, 図中では, 付録 Aで述べる関東地域の地 震の結果(×印)も併せて示した. 関東地域の地震につ

- 図3.2 図3.1 の直達 S 波区間から推定されたエネルギ・ス ペクトル
- Fig. 3.2 Energy spectrum calculated using the S-wave data shown in Fig. 3.1.

いて得られた M_0 - T_d 関係は,

$$\log T_d = (0.243 \pm 0.006) \cdot \log M_0 - (3.842 \pm 0.090)$$
(4.2)

である.

4.2 サイト増幅特性

図2.2 及び表2.1 に示す個々の地震に対し,足尾観測 網を構成する各観測点の震源距離のバラツキは1%未満 の範囲に収まる.震源分布に偏りはあるが,各サイトの 相対増幅特性は、これらの地震を用いて決定した.まず、 AS3 観測点を基準観測点としたとき、他の観測点の相対 増幅度特性を図4.2(a)~図4.2(e) に示す.これ らの図から判るように、足尾地域の6観測点で、最も相 対増幅度特性が小さくなるのは、AS4 観測点である.従 って、以下の議論では、AS4を基準観測点として用いる こととする.AS4を基準観測点としたとき、他の観測点 の増幅度特性は、図4.3 及び表4.1 に示すようになる.

図4.3から判るように、先新第三系の沢入花崗閃緑岩中に観測井を掘削したAS2とAS3観測点の相対増幅度特性は、高周波数域で高い値を示している. 観測井の孔底付近のS波速度では、沢入花崗閃緑岩中を50m掘削したAS3観測点の方が、古生層の粘板岩を40m掘削したAS4観測点や深沢花崗閃緑班岩を36m掘削したAS5観測点と比較して大きな値を示しているが、増幅度特性が決して小さくはならないことが判ろう.また、先(新)第三系の基盤岩といえども、図4.3に示すように、相対増幅度特性が高周波数域で大きく異なることが判る. 従って、1 Hz以上の短周期地震動を用いる震源パラメータの考察は、50m程度の掘削深度を持つ観測井を基準観

測点として選択する場合,困難な作業となろう.本報告 では,AS4観測点を基準観測点として震源特性の考察を 進める.

4.3 伝播経路における S 波の 1/Q_s(f)特性

伝播経路における S 波の $1/Q_s(f)$ 特性の推定には, 図 2.4及び表 2.2 で示す地震を用いている. 観測網の大 きさが,高々 10 kmであり,震源分布の大きさもせいぜ い 20 km程度である.加えて,震源の深さも 10 km程度 までである.従って,実測された平均 S 波速度 3.4 km/s を用いると,1 Hz の S 波で,数波の波の伝播を扱うこと になる.この様な条件の下で,1 Hz の S 波の $1/Q_s$ を推 定することは不可能であろう.従って,少なくとも 10波 以上の波の伝播が扱える 5 Hz 以上が,S 波の $1/Q_s(f)$ に対する推定対象周波数域となろう.

S 波の $1/Q_s(f)$ に対する推定結果を 図 4.4 (実線) 及び 表 4.2 に示す. 図中には, Kinoshita (1994) によ る関東地域での $1/Q_s(f)$ (点線) も併せて示した. 足 尾地域の浅い地殻における S 波の $1/Q_s(f)$ 特性は, 全 体として, 関東地域の結果に似た傾向の特性を示すが, その数値は若干大きなものとなっている.本報告では,

図4.1 指定された地震モーメントと直達 S 波の長さの関係 Fig. 4.1 Estimated relations between seismic moment and S-wave duration.

図 4.2 (a) AS3 サイトを基準観測点としたときに得られる AS1 サイトの相対増幅特性

Fig. 4.2 (a) Relative amplification factors of the Ashio array sites : AS1/AS3.

図 4.2 (b) AS3 サイトを基準観測点としたときに得られる AS2 サイトの相対増幅特性

Fig. 4.2 (b) Relative amplification factors of the Ashio array sites : AS2/AS3.

図 4.2 (c) AS3 サイトを基準観測点としたときに得られる AS4 サイトの相対増幅特性

Fig. 4.2 (c) Relative amplification factors of the Ashio array sites : AS4/AS3.

図 4.2 (d) AS3 サイトを基準観測点としたときに得られる AS5 サイトの相対増幅特性

Fig. 4.2 (d) Relative amplification factors of the Ashio array sites : AS5/AS3.

図 4.2 (e) AS3 サイトを基準観測点としたときに得られる ASK サイトの相対増幅特性

Fig. 4.2 (e) Relative amplification factors of the Ashio array sites : ASK/AS3.

Frequency[Hz]	AS1	AS2	AS3	AS4	AS5	ASK
0.504	2.0835	1.6983	1.4174	1	1.0325	2.0752
0.635	1.8071	1.5514	1.2470	1	0.8990	1.7316
0.800	2.1520	1.8683	1.4196	1	1.1171	1.9661
1.008	3.1182	2.5105	1.8560	1	1.6004	3.1483
1.270	4.8685	3.2099	2.4871	1	1.8554	5.1349
1.600	6.5982	3.7176	2.8374	1	1.6610	6.4802
2.016	8.5062	4.1739	2.9780	1	1.5103	8.4108
2.540	9.4834	4.8937	2.9045	1	1.3721	11.4368
3.200	9.8142	5.9926	2.7310	1	1.4527	14.9606
4.032	10.2863	6.2532	2.5899	1	1.3805	22.9611
5.080	11.5594	5.6653	2.6700	1	1.1661	34.1913
6.400	14.0152	5.9631	3.0885	1	1.0450	42.2120
8.064	18.4618	7.1754	3.5964	1	1.0540	42.4395
10.159	22.8723	8.7951	4.3321	1	1.2617	47.9097
12.800	23.0358	11.1310	5.2626	1	1.5992	63.4723
16.127	21.2093	11.9816	6.0121	1	1.7850	79.6554
20.319	17.0903	9.6333	6.2115	1	1.6485	73.1500
25.600	13.1864	7.7588	6.3696	1	1.3817	64.0134
32.254	9.5792	6.2438	5.6549	1	1.0999	43.5929

表 **4.1** AS4 サイトを基準観測点としたときに得られる他サイトの相対増幅特性 **Table 4.1** Relative amplification factors of the Ashio array sites. The reference site is the AS4 site.

図4.3 AS4 サイトを基準観測点としたときに得られる他 サイトの相対増幅特性

Fig. 4.3 Relative amplification factors of the Ashio sites. The reference site is the AS4 site.

前述の議論から、信頼性の高い 5Hz を超える周波数帯 域での平均値をもって、足尾地域の地殻における S 波 の $1/Q_s$ としよう.即ち、 $1/Q_s$ (f) =0.0032を以下の考 察において用いることとする.

4.4 震源パラメータ

基準観測点を AS4 観測点の 40m井としたとき、即ち、 AS4 でのサイト増幅特性を全周波数で 2 としたとき、推 定された加速度震源スペクトル、 $f^{2\dot{M}_{0}}(f)$ から、 M_{0} に対する S 波の地震エネルギ E_{s} やコーナ周波数 f_{c} 等と の関係が 3.3 で示した方法に基づいて計算される.最初 に、 M_{0} - E_{s} の関係を 図 4.5 に示す.図中、参考のため、 付録 A で得られる関東地域の地震で得られた結果も併せ て示してある.図中に実線(足尾地域の地震)と点線 (関東地域の地震)で示した M_{0} - E_{s} の関係式は以下のよ うになる.即ち、足尾の地震の場合、

 $\log E_s = \log M_0 - (5.854 \pm 0.433) \tag{4.3}$

及び, 関東の地震の場合,

$$\log E_s = \log M_0 - (5.011 \pm 0.438) \tag{4.4}$$

となる.

次に, M₀-f_cの関係について見てみよう.結果が図4.6 である.足尾の地震(〇印)から得られた結果と関東の 地震(×印)での結果に,明瞭な食い違いが生じている のが判ろう.スケーリング関係の整合性という立場から

図4.4 足尾地域において推定された 1 / Q_s (f) と関東地 域の 1 / Q_s (f)

Fig. 4.4 Estimated $1/Q_s(f)$ for S-wave in the Ashio region (solid line). The dashed line is $1/Q_s(f)$ in the Kanto region, estimated by Kinoshita (1994).

表 4.2	足尾地域において推定された $1/Q_s(f)$	の値
-------	--------------------------	----

Table 4.2 Values of estimated $1/Q_s(f)$ in the Ashioregion, central Japan.

Frequency[Hz]	1/Q _S
0.504	0.1804
0.635	0.1645
0.800	0.1078
1.008	0.0667
1.270	0.0495
1.600	0.0403
2.016	0.0271
2.540	0.0166
3.200	0.0082
4.032	0.0019
5.080	0.0002
6.400	0.0020
8.064	0.0042
10.159	0.0045
12.800	0.0033
16.127	0.0029
20.319	0.0028
25.600	0.0027
32.254	0.0029

図 4.5 推定された地震モーメントと地震エネルギの関係 Fig. 4.5 Estimated relations between seismic moment and seismic energy.

図 4.6 推定された地震モーメントとコーナ周波数の関係 Fig. 4.6 Estimated relation between seismic moment and corner frequency.

言えば、この食い違いは問題となろう.なお、M₀-f_cの 関係式は、足尾と関東の地震について、各々、以下の ようになる.即ち、足尾の地震の場合、

 $\log M_0 = -3\log f_c + (14.972 \pm 0.475) \tag{4.5}$

及び,関東の地震の場合,

 $\log M_0 = -3\log f_c + (16.371 \pm 0.511) \tag{4.6}$

となる.

5. 考察

本報告では、2つのデータセットから推定される震源 パラメータのスケーリング関係を調査することを仕事 の目的としている.そこで、ここでは、基準観測点が スケーリング関係にどのように影響するかを見てみよ う.まず、ここで扱っている2つの基準観測点について 考えよう.明らかに2つの点でこれらの基準観測点の違 いを見ることが出来よう.最初の点は、観測井の深さ である.一つは、先第三系基盤中 800 mの深度に地震計 が設置されており、他の一つは、先第三系基盤中とは いえ、地震計の設置深度はわずか 40 mである.従って、 端的に言えば、深度 800 mから 40 mに至る経路の効果を 本来ならば、見積もるべきであろう.これは、包括的 なインピーダンス補正では取り除けない周波数特性を 本来有するであろう.特に,基盤岩の表層100m程度は, かなり風化が進んでいるとみるべきであり,高周波数 側のサイト効果は無視出来ないであろう.これは、少 なくとも、M₀の見積もりにバイアスが生じることをあ る程度覚悟せねばならない.

他の点は、深度40m以浅の層から生じるサイト効果の補正である.深度が800mともなれば、地表からの反射波が再度観測点に戻ってくるtwo-way time に余裕があり、その時間内のデータに関しては、サイト補正が殆ど無用となろう.しかしながら、40m程度では、本来の入射波が地表からの反射波により乱される(重なる)ことを覚悟せねばならない.一般的に言えば、このサイト効果は、fcを小さくする方向に作用する.但し、前に述べた40m以深のサイト効果と比較して、この40m以浅のサイト効果は、地表に地震計を設置し、40m井の地震計と比較することにより、それなりのサイト補正が可能である.以下、これについて述べよう.

まず,地中観測記録は,入射上昇波+上部表層から の下降波に分解される.従って,入射波を基準とした とき,地中観測波は,1+(上部表層からの下降波/入 射上昇波)なる伝達関数を有する.実際の計算法は, Kinoshita(1999)に示されているが,その下降波の見

積もりには上部表層における S 波の減衰特性,即ち, $1/Q_s(f)$ が必要となる.これが求まれば、下降波は周波数領域で評価され、上記伝達関数の逆関数が地中サイトの補正関数となる.

実際の手順としては、基準観測点 AS4 に設置された 地中40mと地表の地震計から得られる同時記録を用い て, 浅層 40 m での S 波の減衰特性 1 /Q_s (f)の推定を行 う. その後, この $1/Q_s(f)$ を用いて, 地中40 mの地 点における入射波に対する表層部からの反射波の計算を 検層データから計算する. 1/Q_s(f) の推定のため, AS4 サイトの地中 40 mの記録に対する地表記録の Fourier 比と、検層資料に基づく伝達関数を図5.1 に示 そう. Fourier 変換は、地中・地表とも、直達 S 波を含 む 2.56 sのデータ長で行っている. 伝達関数に周波数変 換を施しながら、Fourier比と整合させると、およそ、 1 /O_s(f) =1/50 程度が納得できる値であろう. この 1/Q。(f) に基づき, 地中40mでの入射波に対する下降 波の伝達特性 G₂/(f)/2 を計算し,その逆関数を示す と、図 5.2 の様になる(但し、都合により、1/2 が乗さ れている). 従って, $[1+G_2(f)/2]^{-1}$ が, サイト補正関 数となる.図 5.1 及び図 5.2 では入射角を 45°として いるが、伝達関数に対する入射角度の依存性は、30°以 上では小さくなる.

さて,上記のサイト補正を行った後に再計算して得られる震源パラメータのスケーリング関係を示しておこう.まず,*M*₀と*T*_dの関係は**図5.3**となり,経験式(3.1)に対応する式として以下を得る.

 $\log T_d = (0.237 \pm 0.008) \cdot \log M_0 - (3.689 \pm 0.097)$ (5.1)

同様にして,式(4.3)及び(4.5)に対応する経験式として,各々,以下を得る.

$$\log E_s = \log M_0 - (5.351 \pm 0.448) \tag{5.2}$$

及び

$$\log M_0 = -3\log f_c + (15.447 \pm 0.468) \tag{5.3}$$

図 5.4 及び 図 5.5 は、各々、サイト補正を行った後の M_0 に対する E_s 及び f_c の関係を示している.また、スト レス・パラメータ E_s/M_0 と M_0 の関係は、図 5.6 に示す ようになり、以下の経験式を得る.

$$\log[E_s/M_0] = (0.128 \pm 0.011) \cdot \log M_0 - (6.992 \pm 0.152) (5.4)$$

最後に、サイト補正を行った後得られる加速度震源ス ペクトルの形状を 図 5.7 に示そう、震源パラメータ M_0,E_s 及び f_c は、結局、この加速度震源スペクトルに基 づく、周波数領域で見積もり量であるから、本来ならば、 この図を用いて議論すべきであろう、図から、関東の地 震の 1.42×10^{14} (N·m)に対する加速度震源スペクト ル $f^{2\dot{M}_0}(f)$ と足尾の地震の 3.62×10^{14} (N·m)に対す るそれとがほぼ同様なスペクトル形状を 1 Hz以上で示 している。 M_0 に関する推定では、この程度の違いは推 定誤差としての範囲内として許容されよう。

図5.3 ~ 図5.5 で言えることは、サイト補正を行った 後に得られる震源パラメータのスケーリング関係は、サ イト補正を行う前の関係と比較して、関東地域のスケー リング関係に近づくと言うことであろう.即ち、サイト 補正の有用性を示すものであろう.但し、推定誤差の範 囲だろうと断定したものの、図5.7 の加速度震源スペク トルのスケーリング関係からも判るが、足尾の地震の *M*₀は、関東の地震と比較して若干ではあるが、過大に 評価される傾向にある.これは、基準観測点を先第三系 基盤内 800 mと 40 mに設定したことの影響が多分に出て

図5.3 サイト補償後に得られた地震モーメントと直達S波の継続時間の関係

Fig. 5.3 Estimated relations between seismic moment and S-wave duration obtained after site compensation.

図 5.4 サイト補償後に得られた地震モーメントと地震エネルギの関係 Fig. 5.4 Estimated relations between seismic moment and seismic energy obtained after site compensation.

図 5.5 サイト補償後に得られた地震モーメントとコーナ周波数の関係 Fig. 5.5 Estimated relations between seismic moment and corner frequency obtained after site compensation.

図 5.6 サイト補償後に得られた地震モーメントと E_s/M_0 の関係 Fig. 5.6 Estimated relations between seismic moment and E_s/M_0 obtained after site compensation.

図 5.7 サイト補償後の加速度震源スペクトル Fig. 5.7 Estimated source acceleration spectra obtained after site compensation.

いるものであろう.しかしながら,この程度の予測誤差 ならば、2つのスケーリング関係の整合性を認めても良 かろうと筆者らは判断する.以下の6.まとめでは、こ れらのスケーリング関係をその誤差範囲として許容する 経験式を提案しよう.

6. まとめ

結局,この種の観測調査(研究)で必要なことは,将 来役に立つものが残せるか否かであろう.本報告では, 将来足尾地域で発生するかもしれないより規模の大きな 地震の性状を見積もるため,以下の2つを残すこととす る.

(1) 関東地域と足尾地域の地震を併せた震源パラメータ のスケーリング関係式は、以下となる.勿論、足尾の地 震の基準観測点のサイト補正は行われているものとする.

 $\log T_{d} = (0.223 \pm 0.003) \cdot \log M_{0} \pm (3.529 \pm 0.036)$ $\log E_{s} = \log M_{0} - (5.174 \pm 0.475)$ $\log f_{c} = -3\log M_{0} + (15.927 \pm 0.674)$ $\log [E_{s}/M_{0}] = (0.128 \pm 0.011) \cdot \log M_{0} - (6.992 \pm 0.152)$

ここで, T_d , M_0 , E_s 及び f_c は, 各々, 直達 S 波の継 続時間, 地震モーメント, 地震エネルギ, 及び, コーナ周波数を示す. 特に, 最初の3 式では, その平均から標準偏差分の誤差範囲に, 関東の地震と足尾の地震から, 各々,

独立に得られた経験式を含むのは言うまでもないことで ある.

(2) 足尾地域の地震記録.

足尾地域で観測された地震記録は、添付の CD-ROM に 格納されている.これらの記録は、全て、K-NET 形式 に変換されたものであり、一次解析用のソフトウエア SMDA2(木下,2003)もこの CD-ROM に含まれている. この SMDA2は、初版のバグ等をある程度修正している。 即ち、Windows 98における印刷の不具合の修正、F-Kス ペクトルにおける結果表示画面の修正、及び、因果的帯 域通過フィルタの追加などである(従来は、零位相型帯 域通過フィルタのみであった).また、足尾地域の地震 と関東地域の地震の震源パラメータを記載した表2.2 及び表A.1は、これらをCD-ROM に電子ファイルとして 格納した.

謝辞

本報告で扱った足尾地域の地震観測に対し,足尾町から,長年にわたり,数多くのご支援を賜った.記して, 感謝の意を表する.

参考文献

1) Burune, J. N. (1970) : Tectonic stress and spectra of seismic shear waves from earthquakes. J. Geophys.

Res., 75, 4997-5009.

- Kinoshita, S. (1994) : Frequency-dependent atten-2) uation of shear waves in the crust of the Kanto area. Japan, Bull. Seism. Soc. Am., 84, 1387-1396.
- 3) 木下繁夫・上原正義・斗沢敏雄・和田安司・小久江洋 輔 (1997): K-NET95型強震計の記録特性.地 震, 49, 467-482.
- 4) Kinoshita, S. (1998) : Kyoshin net (K-NET). Seismological Res. Letter, 69, 309-332.
- 5) Kinoshita, S. (1999) : A stochastic method for investigating site effects by means of a borehole array - SH and Love waves. Bull. Seism. Soc. Am., 89, 485-500
- 6) Kinoshita, S. and Ohike, M. (2003) : Scaling relations of earthquakes that occurred in the upper part of the Philippine sea plate beneath the Kanto region, Japan, estimated by means of borehole recordings. Bull. Seism. Soc. Am., 92, 611-624.

- 木下繁夫 (2003): 近地地震の記録. 防災科学技 7) 術研究所研究資料, No.240, 1-190.
- McCann, M. W. Jr., and Shah, H. C. (1979) : 8) Determining strong-motion duration of earthquakes. Bull. Seism. Soc. Am., 69, 1253-1265.
- 9) Vassiliou, M. S., and Kanamori, H. (1982) : The energy release in earthquakes. Bull. Seism. Soc. Am., 72, 371-387.
- 10) Watanabe, K., Sato, H., Kinoshita, S., and Ohtake, M. (1996) : Source characteristics of small to moderate earthquakes in the Kanto region, Japan: application of a new definition of S-wave time window. Bull. Seism. Soc. Am., 86,1284-1291.
- 11) Yoshimoto, K., Sato, H., Kinoshita, S., and Ohtake, M. (1993) : High-frequency site effect of hard rocks at Ashio, central Japan. J. Phys. Earth, 41, 327-335. (原稿受理:2003年9月30日)

付録

付録は、以下の2つである.

A. 関東地域の地震の震源パラメータ

ここでは、本文で用いた関東及びその周辺域で得られた地震の震源パラメータについて述べよう.これらのパラメータの推定方法は、Kinoshita and Ohike (2003)と同じであり、ここでは割愛する.まず、図 A.1 に関東地域の観測点分布図を示す.基準観測点は、SHM (下総地殻活動観測施設)サイトの2,300 m井である.震源パラメータの推定に用いた地震は、図 A.2 及び表 A.1 に示すものである.特に、表 A.1 には推定された震源パラメータの数値を、M₀、E_s 及び f_c等についてまとめてある.

B. 添付 CD-ROM

添付 CD-ROM には、本報告で用いた足尾地域の観測 網で得られた地震記録を観測点毎にまとめてある. 記 録形式は、K-NET 形式である. また, これらの記録の 表示や一次処理のためのソフトウエア SMDA2(木下, 2003)を同時に格納してある.

図A.1 関東地域における強震観測点

Fig. A.1 Location of the strong-motion stations in the Kanto region, central Japan.

- 図A.2 震源パラメータの推定に用いた,関東地域及びその周辺域の地震の震源分布
- Fig. A.2 Locations of earthquakes used for studying source parameters.

夏東地域及びその周辺域で発生した地震の震源パラメータ	ist of source parameters of earthquakes that occurred in and around the Kanto region, central Japan.
関東地域及び	List of source
表 A.1	Table A. 1

Duration	(s)	7.008	2.209	6.980	1.528	3.861	1.614	1.651	1.215	2.718	4.156	3.351	1.049	1.628	0.418	4.245	1.507	0.651	6.576	0.647	0.327	0.897	0.670	0.982	0.949	4.034	0.725	0.573	0.533	1.192	0.771	0.826	1.523	1 477	0 991
Δσ	(MPa)	0.57	1.78	2.04	8.13	30.58	9.87	7.31	45.32	1.80	30.53	6.18	2.00	4.22	0.89	10.37	9.58	7.62	4.98	11.72	4.88	3.05	4.87	0.61	0.76	1.65	1.02	7.01	14.29	14.70	5.81	1.58	2.43	1.66	13.86
σ_A	(MPa)	0.44	1.25	1.11	1.50	7.88	2.04	1.73	7.30	0.47	7.87	1.29	0.49	0.87	0.21	1.78	1.66	0.84	0.85	3.12	0.65	0.69	1.28	0.19	1.02	09.0	0.62	1.37	2.43	3.07	1.10	0.32	0.54	0.27	3.89
Es	(N)	1.43E+13	4.17E+12	5.64E+13	7.54E+12	1.13E+14	1.01E+12	9.45E+11	1.60E+13	1.79E+12	1.50E+14	3.18E+12	1.70E+10	7.50E+11	5.11E+08	7.09E+12	7.45E+11	1.49E+09	1.65E+14	2.57E+10	1.65E+09	2.42E+10	1.61E+10	5.80E+10	1.92E+10	2.33E+12	7.05E+09	1 14E+10	6.00E+09	1.02E+12	2.75E+10	1.41E+10	1 55E+11	9.56E+10	2.07E+12
Ъс	(Hz)	0.139	0.437	0.183	0.632	0.692	1.461	1.276	1.477	0.417	0.630	0.729	2.071	0.911	3.797	0.739	1.491	8.727	0.158	6.031	6.678	2.381	3.908	0.673	1.841	0.403	2.403	5.054	9.619	1.903	3.298	1.761	1.094	0.896	1.595
Mo	(N- M)	1.36E+18	2.29E+17	2.14E+18	3.46E+17	9.90E+17	3.39E+16	3.77E+16	1.51E+17	1.61E+17	1.31E+18	1.03E+17	1.46E+15	3.60E+16	1 <u>.04E+14</u>	2.75E+17	3.10E+16	7.40E+13	1.35E+19	3.45E+14	1 <u>.06E+14</u>	2.42E+15	5.27E+14	1.29E+16	7.89E+14	1.63E+17	4.75E+14	3.50E+14	1.04E+14	2.29E+16	1.05E+15	1.87E+15	1.20E+16	1.49E+16	3.66E+16
M _{JMA}		7.0	5.5	6.7	5.4	6.1	4.8	4.7	5.5	5.7	<u>6.0</u>	<u>6.0</u>	4.4	5.2	3.6	6.1	4.9	3.6	6.5	4.1	3.5	4.3	3.8	4.5	4.6	6.0	4.0	3.8	3.7	4.9	4.0	4.1	5.0	4.9	4.9
Depth	(km)	1.0	60.0	14.4	81.0	71.3	70.2	72.0	45.4	23.8	67.0	18.1	19.6	17.6	15.3	71.6	48.7	15.1	57.9	14.3	15.1	62.3	8.7	10.7	8.5	2.1	13.7	6.3	16.2	51.4	17.2	16.5	13.4	15.8	49.7
Longitude	(E)	139.250	139.884	139.184	139.796	140.134	140.142	140.139	140.614	139.479	140.105	139.046	138.983	139.073	139.051	140.112	139.950	138.953	140.705	139.110	138.991	139.727	139.357	139.231	139.342	139.446	139.411	139.448	139.012	139.853	139.258	139.260	139.275	139.258	140.072
Latitude	(N)	34.767	36.084	34.945	36.027	35.576	35.593	35.594	36.460	34.972	35.993	35.536	35.570	35.609	35.519	35.910	36.081	35.491	34.838	35.239	35.501	36.151	34.778	34.770	34.741	34.616	34.609	34.667	35.518	36.159	34.913	34.912	34.917	34.909	36.210
	Time	1224	1924	1620	0410	0254	0326	0504	0814	1333	2114	1247	0151	0153	1952	2125	1317	2319	1153	0117	2123	2016	1505	1727	1930	0941	0039	1239	1222	1959	1038	1752	0635	1556	1817
Origin time	Date	0114	0320	0629	0924	0925	0925	0925	0307	0812	0227	0808	0810	0214	1113	1004	1122	0614	0624	0109	0729	0827	1118	1121	1121	1122	1123	1123	0108	0410	0510	0510	0511	0511	0630
	Year	1978	1978	1980	1980	1980	1980	1980	1982	1982	1983	1983	1983	1984	1984	1985	1985	1986	1986	1986	1986	1986	1986	1986	1986	1986	1986	1986	1987	1987	1987	1987	1987	1987	1987

Duration	(s)	0.455	1.739	0.433	0.542	0.428	7.223	0.474	0.595	0.523	0.378	0.627	1.013	0.532	0.554	0.512	1 020	0.750	0.503	0.644	0.514	0.628	0.677	0.499	0.539	0.466	606 ⁻ 0	0.720	1.160	0.853	0.586	0.602	0.451	1.894	0.428
Δσ	(MPa)	8.23	1.98	2.83	6.66	3.12	9.59	0.42	0.47	0.35	0.18	0.43	2.29	4.72	3.60	3.53	0.68	0.82	1.09	0.65	2.71	0.58	0.56	0.18	3.04	1.55	1.04	1.21	0.47	1.52	4.93	6.78	1.86	2.17	1.14
σA	(MPa)	0.95	0.58	0.40	0.96	0.47	5.35	0.08	60 [.] 0	0.10	0.04	0.24	0.54	0.68	1.20	0.45	0.19	0.12	0.25	0.53	0.57	0.27	0.08	0.07	1.55	0.59	0.19	0.39	0.13	0.42	0.68	1.10	0.38	0.34	0.30
Es	(r)	1.57E+09	8.66E+10	4.94E+08	4.73E+09	2.63E+08	2.71E+14	3.89E+08	7.16E+08	6.07E+08	1.58E+08	4.35E+09	4.33E+10	5.99E+09	1.50E+09	4.55E+08	8.62E+09	2.51E+10	7.71E+08	1.70E+09	3.65E+09	8.68E+08	6.07E+09	2.85E+08	1.06E+09	2.92E+08	6.40E+09	3.36E+10	3.75E+10	8.34E+09	1.99E+09	3.03E+09	1.59E+09	1.11E+11	5.36E+08
Fc	(Hz)	9.190	1.269	7.105	5.951	9.522	0.309	2.372	2.137	2.038	1.890	1.548	1.648	4.364	7.645	8.167	1.324	0.855	3.824	3.155	4.053	3.019	1.043	1.911	8.852	7.858	1.677	1.300	0.634	2.283	6.405	7.271	4.092	1.007	4.636
Mo	(M-N)	1.14E+14	6.26E+15	8.47E+13	3.39E+14	3.88E+13	3.48E+18	3.35E+14	5.20E+14	4.38E+14	2.91E+14	1.24E+15	5.48E+15	6.09E+14	8.63E+13	6.95E+13	3.12E+15	1.41E+16	2.10E+14	2.22E+14	4.37E+14	2.26E+14	5.25E+15	2.70E+14	4.69E+13	3.42E+13	2.37E+15	5.88E+15	1.99E+16	1.36E+15	2.01E+14	1.89E+14	2.91E+14	2.27E+16	1.22E+14
MJMA		3.6	4.8	3.5	4.0	3.6	6.7	3.6	3.7	3.7	3.7	4.0	4.4	4.0	3.7	3.7	4.3	4.2	3.6	3.7	<u>3.8</u>	3.5	4.1	3.6	3.7	3.7	4.2	4.1	4.6	3.9	3.5	3.6	3.9	5.2	3.5
Depth	(km)	42.1	23.5	43.3	44.5	47.9	47.3	34.2	31.0	38.7	28.9	31.8	49.7	35.0	29.8	26.9	44.5	34.0	28.8	33.0	34.6	28.6	29.7	32.9	27.7	29.2	34.1	32.6	31.4	29.4	30.6	30.8	36.7	34.2	33.7
Longitude	(E)	139.916	139.126	139.920	139.930	139.864	140.519	140.462	140.462	140.503	140.442	140.489	140.480	140.512	140.473	140.447	140.489	140.499	140.437	140.475	140.502	140.415	140.417	140.467	140.382	140.436	140.451	140.403	140.403	140.397	140.413	140.383	140.412	140.399	140.388
Latitude	(N)	36.062	35.534	36.071	36.085	36.154	35.372	35.447	35.425	35.401	35.464	35.426	35.396	35.343	35.403	35.429	35.482	35.386	35.368	35.484	35.370	35.471	35.472	35.491	35.463	35.493	35.428	35.407	35.414	35.420	35.411	35.434	35.389	35.416	35.409
	Time	0047	0341	1918	0721	2357	1108	1123	1139	1204	1212	1352	1407	1448	1739	1830	2137	0605	0614	2060	2304	0119	1006	2249	2340	2257	1009	1453	1556	1606	1422	0811	0858	2042	0046
Origin time	Date	0720	1018	1023	1030	1126	1217	1217	1217	1217	1217	1217	1217	1217	1217	1217	1217	1218	1218	1218	1218	1219	1219	1220	1220	1223	0105	0107	0107	0107	0108	0109	0109	0116	0117
	Year	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1987	1988	1988	1988	1988	1988	1988	1988	1988	1988

Duration	(s)	0.553	0.603	0.305	0.923	0.711	3.598	0.302	0.927	1.899	1.371	0.899	1.281	1.802	1.035	0.952	1.712	1.084	2.453	0.534	0.543	0.564	0.740	2.113	0.307	4.921	0.463	2.618	0.602	0.925	0.459	1.028	0.863	1.683	1 433
Δσ	(MPa)	0.25	0.74	3.12	0.69	4.29	12.20	2.05	0.39	09.0	0.83	0.80	1.13	0.57	4.63	0.93	4.71	0.52	1.70	1.31	2.14	3.64	7.45	4.82	4.88	13.80	12.14	5.27	3.18	0.68	4.19	0.44	0.51	0.34	0.33
σA	(MPa)	0.06	06.0	0.28	0.22	0.94	2.90	0.36	0.13	0.20	0.29	0.12	0.50	0.18	0.57	0.15	1.40	0.16	0.37	0.17	0.35	1.14	1.50	1.09	0.38	2.67	1.69	0.53	0.54	0.19	0.77	0.16	0.15	0.07	0.14
Es	(r)	1.87E+09	1.15E+09	1.69E+08	2.26E+10	5.85E+10	4.13E+13	8.04E+08	1.60E+10	1.11E+11	1.67E+10	1.71E+10	1.72E+11	7.27E+10	9.36E+10	2.67E+10	8.55E+11	7.63E+09	7.05E+11	7.66E+08	9.48E+08	1.90E+10	3.92E+10	2.64E+12	2.82E+08	3.56E+13	2.00E+10	4.37E+12	1.78E+10	1.46E+10	4.45E+09	1.41E+10	6.09E+09	3.06E+10	4 49E+10
Ъс	(Hz)	1.079	4.485	9.358	1.008	2.204	0.511	5.230	0.779	0.546	1.306	0.961	0.797	0.606	1.635	0.928	1.062	1.179	0.516	3.536	4.953	3.242	3.542	0.676	10.119	0.544	5.426	0.464	2.474	1.110	4.840	0.913	1.236	0.492	0.538
Mo	(N-M)	2.17E+15	8.81E+13	4.08E+13	4.37E+15	4.29E+15	9.82E+17	9.24E+13	5.29E+15	2.37E+16	2.42E+15	5.84E+15	1.44E+16	1.67E+16	6.84E+15	7.52E+15	4.21E+16	2.05E+15	7.96E+16	3.19E+14	1.89E+14	1.15E+15	1.80E+15	1.67E+17	5.05E+13	9.17E+17	8.15E+14	5.68E+17	2.25E+15	5.31E+15	3.97E+14	3.76E+15	1.75E+15	1.84E+16	1.37E+16
MJMA		3.9	3.8	3.5	4.4	4.1	6.0	3.3	4.6	5.2	4.7	4.2	4.8	5.2	4.6	4.7	5.3	4.0	5.6	3.6	3.6	3.8	4.3	5.6	3.4	<u>6.0</u>	3.9	5.2	4.2	4.4	3.6	4.4	4.1	4.9	4.7
Depth	(km)	33.5	31.0	46.3	15.5	28.2	90.5	14.6	14.2	1.2	11.9	10.2	8.1	10.5	8.9	10.8	61.6	11.2	22.8	25.2	40.4	28.8	44.6	45.4	43.9	51.5	46.6	45.3	47.7	68.7	42.7	16.6	9.0	6.6	<u>6.</u> 6
Longitude	(E)	140.408	140.393	139.989	139.223	140.362	139.626	139.065	139.172	139.175	139.192	139.199	139.173	139.199	139.224	139.195	139.856	139.256	138.980	138.973	140.406	140.365	139.895	139.905	139.920	140.666	139.927	140.689	139.872	140.536	139.910	138.986	139.110	139.106	139.106
Latitude	(N)	35.442	35.426	36.110	34.928	35.397	35.668	35.435	34.945	34.959	34.948	34.949	34.970	34.949	34.960	34.938	35.103	34.879	35.515	35.509	35.386	35.378	36.094	36.049	36.040	35.706	36.102	35.753	36.087	35.224	36.028	35.503	34.980	34.986	34.990
	Time	1550	0430	1659	0450	1706	0534	0643	0815	0840	1242	0620	1039	2016	2308	1706	1414	0030	0049	0819	0114	1245	1802	2127	2131	2339	2051	0137	0441	0503	0634	0124	1853	2218	0228
Origin time	Date	0122	0206	0207	0220	0225	0318	0626	0731	0731	0731	0801	0801	0802	0802	0804	0812	0003	0905	0905	0929	1219	1228	0219	0219	0306	0317	0318	0412	0612	0622	0701	0704	0704	0705
	Year	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989

Duration	(s)	0.919	1.978	2.455	1.162	2.877	7.639	0.819	0.917	3.736	1.751	2.006	1.682	3.261	0.564	0.922	1.494	0.795	1.276	0.617	0.270	0.757	0.506	1.133	1.860	0.423	0.557	0.310	0.731	0.494	0.847	1.222	0.881	0.888	0.742
Δσ	(MPa)	0.62	0.68	0.65	2.64	3.67	4.22	5.57	9.56	5.05	4.46	2.11	0.94	14.01	0.74	5.08	5.24	4.78	1.01	5.70	6.85	1.97	17.29	3.85	7.84	4.16	0.60	1.91	0.37	0.50	4.21	1.60	10.53	10.75	0.51
σ_{A}	(MPa)	0.16	0.19	0.19	0.67	1.62	1.70	1.52	1.70	0.83	0.62	0.59	0.91	3.43	0.14	0.87	2.08	06.0	0.51	1.38	1.18	0.45	2.83	0.86	2.17	1.15	0 [.] 0	0.52	0.11	0.19	0.83	0.40	2.34	1.62	0.12
Es	(N)	5.27E+09	1.98E+11	5.15E+11	1.48E+11	4.44E+12	3.42E+13	1.04E+11	1.77E+11	8.92E+13	5.43E+11	6.17E+11	3.93E+11	6.06E+13	1.53E+09	9.35E+10	7.01E+11	7.80E+10	2.40E+11	1.33E+10	2.43E+09	3.77E+09	2.92E+10	2.66E+11	1.64E+12	9.09E+09	1.37E+09	9.38E+08	2.76E+09	6.92E+09	7.71E+10	6.37E+10	1.71E+11	8.12E+10	3.61E+09
Fc	(Hz)	1.433	0.467	0.333	1.227	0.591	0.319	2.334	2.426	0.194	0.924	0.681	0.698	0.498	2.207	1.937	1.342	2.049	0.695	4.521	8.035	3.316	6.367	1.246	1.174	4.339	1.849	5.494	1.313	1.294	1.910	1.156	2.823	3.211	1.398
Mo	(N- M)	1.35E+15	4.33E+16	1.13E+17	9.22E+15	1 15E+17	8.41E+17	4.70E+15	7.17E+15	7.37E+18	3.65E+16	7.18E+16	2.96E+16	1.22E+18	7.35E+14	4.51E+15	2.32E+16	5.95E+15	3.22E+16	6.62E+14	1 42E+14	3.49E+14	4.33E+14	2.14E+16	5.19E+16	5.46E+14	1.01E+15	1.24E+14	1.75E+15	2.47E+15	3.90E+15	6.70E+15	5.02E+15	2.10E+15	2.00E+15
MJMA		4.2	5.2	5.5	4.7	5.7	6.5	4.3	4.6	0.0	5.1	5.4	5.2	5.9	3.9	4.1	4.9	4.3	4.7	3.9	3.4	3.8	3.5	4.7	5.3	3.8	3.8	3.5	4.2	3.9	4.3	4.9	4.3	4.0	3.9
Depth	(km)	8.9	19.6	6.8	7.2	17.4	7.4	46.9	46.3	49.0	15.3	45.9	34.8	85.3	42.5	23.5	55.9	47.4	44.9	48.4	44.7	19.1	18.0	49.9	48.0	46.3	29.9	28.9	29.5	41.4	19.3	6.3	47.3	23.5	50.7
Longitude	(E)	139.112	139.052	139.088	139.092	139.480	139.226	139.858	139.911	140.736	139.110	140.450	140.443	139.738	139.930	138.986	139.817	139.875	139.955	139.792	139.933	139.136	138.923	139.883	139.900	139.901	140.602	140.615	140.605	140.449	139.071	138.997	139.910	140.780	139.977
Latitude	(N)	34.985	35.055	34.991	34.992	34.834	34 744	36.161	36.071	35.667	35.212	35,339	35.395	35.221	36.045	35.505	36.194	36.084	36.060	36.109	36.090	35.521	35.461	36.093	36.050	36.068	35.378	35.356	35.371	35.468	35.488	35.200	36.077	35.803	35.733
	Time	1237	0001	1109	1110	0619	1553	0007	0052	1022	1613	0847	1144	0404	1054	1149	1203	0121	1309	1408	1753	0807	1238	0946	1136	2042	0014	1256	0052	1040	0256	1506	1906	1122	0735
Origin time	Date	0705	0707	0709	0709	1014	0220	0303	0409	0601	0805	0823	0823	0202	0226	0408	0414	0423	0827	0630	1022	1108	1112	1128	0521	0726	0208	0209	0210	0613	1004	1025	1104	1116	1206
	Year	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1990	1992	1992	1992	1992	1992	1992	1992	1992	1992	1992	1992	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994

防災科学技術研究所研究報告 第65号 2004年3月

	Origin time		Latitude	Longitude	Depth	MJMA	Mo	Fc	Es	σA	Δσ	Duration
Year	Date	Time	(N)	(E)	(km)		(N- m)	(Hz)	(L)	(MPa)	(MPa)	(s)
1994	1219	0752	35.337	139.067	11.1	3.6	2.45E+14	4.735	4.94E+09	0.84	4.04	0.487
1995	0101	0552	35.623	140.101	73.5	4.8	6.26E+16	0.829	7.45E+11	0.82	3.32	1.557
1995	0108	0428	36.323	139.958	61.1	4.5	4.17E+15	2.907	1 04E+11	1.72	9.55	1.039
1995	0131	2113	36.324	139.948	62.1	3.5	4.31E+14	4.775	2.20E+10	3.52	4.38	0.455
1995	0323	0724	36.124	140.004	50.4	4.9	3.83E+16	1.051	8.61E+11	1.55	4.15	1.673
1995	0404	0649	36.214	140.037	51.5	3.7	1.05E+15	4.475	2.28E+10	1.49	8.80	0.511
1995	0418	2026	35.072	138.604	17.7	4.5	1.07E+16	1.241	2.06E+11	0.80	3.18	0.929
1995	0427	0018	36.041	139.904	45.4	3.9	1.29E+15	3.863	1.83E+10	0.98	6.94	0.595
1995	0531	0508	36.100	139.770	62.2	3.6	5.68E+14	4.054	5.58E+09	0.68	3.53	0.340
1995	0703	0853	35.158	139.528	112.0	5.2	1.62E+17	0.999	1.18E+13	5.01	15.11	1.958
1995	0730	0324	35.896	140.529	27.2	5.1	9.68E+16	0.530	5.73E+11	0.41	1.34	1.750
1995	0827	1432	36.121	140.062	69.2	4.5	6.77E+15	2.028	1.46E+11	1.48	5.26	1.076
1995	0926	2045	35.558	140.155	72.8	4.4	2.36E+16	1.096	2.93E+11	0.86	2.90	1.134
1995	1012	1503	36.074	139.943	44.0	4.1	2.13E+15	3.203	3.42E+10	1.10	6.53	0.688
1995	1015	0631	35.902	140.488	31.5	3.6	2.01E+14	4.293	8.87E+08	0.30	1.49	0.349
1995	1027	0612	36.531	140.477	50.1	3.9	9.68E+14	5.420	3.83E+10	2.72	14.37	0.652
1995	1105	1312	36.112	139.933	44.6	3.9	5.80E+14	2.554	2.52E+10	2.99	06.0	0.588
1995	1112	0601	35.692	139.473	49.3	4.1	3.11E+15	2.115	3.06E+10	0.68	2.74	0.766
1995	1124	1619	35.354	140.265	70.8	4.6	8.17E+15	1.571	4.92E+10	0.41	2.96	1.096
1995	1201	1346	36.902	141.216	66.0	4.7	2.10E+16	1.489	4.67E+11	1.53	6.45	1.255
1995	1219	0717	36.893	141.214	75.0	4.2	4.93E+15	3.540	1.95E+11	2.73	20.39	0.825
1996	0127	0940	36.100	139.656	61.9	3.7	7.07E+14	6.920	2.49E+10	2.43	21.84	0.623
1996	0207	1037	36.104	139.964	48.3	4.0	6.66E+14	3.918	4.96E+09	0.51	3.73	0.505
1996	0306	2312	35.464	138.935	17.4	4.3	7.17E+15	1.379	1.60E+11	0.93	2.91	0.984
1996	0306	2335	35.468	138.935	17.5	5.3	6.80E+16	1.043	4.79E+12	2.95	11.94	2.557
1996	0406	0512	35.542	140.124	72.6	4.0	1.61E+16	1.044	7.99E+10	0.34	1.71	0.698
1996	0424	0927	36.954	141.103	65.3	4.4	5.65E+15	2.515	1.13E+11	1.38	8.39	0.936
1996	0507	2126	36.048	139.788	84.1	4.0	2.37E+15	2.690	3.25E+10	0.94	4.30	0.659
1996	0509	2105	35.907	140.133	65.8	4.0	1.43E+15	2.748	1.16E+10	0.56	2.76	0.607
1996	0515	0929	36.748	140.226	80 <u>.</u> 0	3.9	1.18E+15	5.188	4.55E+10	2.66	15.33	0.523
1996	0519	1259	35.334	140.334	24.0	3.6	5.33E+14	3.251	7.96E+09	0.63	2.84	0.529
1996	0519	1300	35.325	140.342	24.9	3.8	1.21E+15	2.770	3.85E+10	1.34	3.97	0.647
1996	0521	1246	35.196	140.299	24.5	3.8	1.25E+15	2.026	1.06E+10	0.35	1.61	0.625
1996	0608	1614	36.461	140.586	48.3	4.0	1 95E+15	2.463	2.08E+10	0.73	2.71	0.604

Duration	(s)	0.572	1.003	0.723	0.249	0.670	0.866	0.634	1.066	0.901	0.517	0.737	5.053	0.415	1.247	0.640	0.627	1.167	0.564	0.472	0.849	0.991	2.282	0.457	2.077	0.532	0.543	0.521	0.841	0.661	1.031	0.839	1.821	0.630	0.520
Δσ	(MPa)	1.07	1.64	1.55	1.88	2.36	5.36	1.61	2.70	1.99	7.82	2.47	7.93	1.59	4.06	6.72	4.64	2.51	4.08	11.88	1.69	1.18	11.35	0.96	6.46	6.64	5.61	2.26	2.03	12.69	2.26	4.64	26.51	1.35	2.79
σA	(MPa)	0.15	0.36	0.95	0.36	0.41	1.62	0.48	0.65	0.56	0.79	0.49	7.43	0.26	1.15	1.68	0.58	0.71	0.88	1.51	0.31	0.57	1.53	0.23	1.31	0.80	0.85	0.38	0.48	2.11	0.49	0.82	5.40	0.45	0.53
Es	(ſ)	1.05E+10	3.09E+10	3.37E+10	1.03E+09	5.54E+09	1.64E+11	7.47E+09	2.25E+11	6.52E+10	1.89E+10	3.55E+10	2.84E+14	3.36E+09	4.95E+11	2.51E+10	5.68E+09	2.87E+11	5.15E+09	6.42E+09	1.12E+10	9.97E+10	3.91E+12	1.12E+09	3.95E+12	4.99E+09	6.38E+09	2.02E+09	6.88E+10	9.83E+10	7.72E+10	1.00E+11	1.35E+13	9.10E+09	3.13E+10
Fc	(Hz)	1.344	1.443	1.893	4.664	3.014	2.023	2.514	1.061	1.385	3.708	1.739	0.318	2.681	1.137	4.119	4.199	0.984	4.775	7.575	1.942	1.015	0.885	3.143	0.693	5.488	4.883	4.060	1.304	3.489	1.307	1.807	1.182	2.176	1.942
Mo	(N- M)	4.74E+15	5.87E+15	2.45E+15	1.99E+14	9.26E+14	6.94E+15	6.54E+14	1.46E+16	8.01E+15	1.65E+15	5.04E+15	2.63E+18	8.86E+14	2.96E+16	1.03E+15	6.72E+14	1.70E+16	4.01E+14	2.93E+14	2.47E+15	1.21E+16	1.76E+17	3.32E+14	2.08E+17	4.30E+14	5.17E+14	3.61E+14	9.82E+15	3.20E+15	1.08E+16	8.44E+15	1.72E+17	8.49E+14	4.08E+15
MUMA		3.9	4.2	3.9	3.3	4.0	4.0	3.5	4.4	4.3	3.6	4.1	6.4	3.7	4.7	3.8	3.8	4.5	3.8	3.6	3.9	4.4	5.4	3.7	5.4	3.8	3.9	3.5	4.1	3.9	4.3	4.0	5.3	3.8	3.8
Depth	(km)	65.9	43.5	47.3	30.5	60.8	100.7	18.6	19.3	50.4	26.8	41.6	55.5	31.5	91.4	91.7	45.6	21.8	50.7	46.9	65.7	71.1	58.7	71.7	52.1	48.6	48.4	28.0	75.6	106.4	73.5	72.7	84.7	17.0	27.0
Longitude	(E)	140.083	140.703	139.910	140.487	139.810	139.476	138.955	138.964	139.859	140.349	139.697	141.262	140.481	139.659	139.242	139.926	139.000	140.270	139.935	139.932	140.135	140.361	140.113	139.878	139.880	140.133	139.539	140.110	140.300	140.170	140.176	141.147	140.975	140.347
Latitude	(N)	35.980	35.741	36.100	35.901	35.508	35.217	35 476	35.506	36.160	35.395	34.949	35.592	35.898	36.115	36.176	36.094	35.453	35.889	36.093	35.099	35.780	34.630	35.777	36.128	36.120	36.210	35.630	35.775	36.874	35.572	35.565	37.289	35.845	35.380
	Time	1425	0114	0657	2353	1550	2306	1955	0316	0103	0823	0211	1137	0445	2036	0210	1823	1225	1135	0126	1030	0740	1640	2205	1028	1523	0821	1553	0026	0707	0522	1004	0521	1715	0446
Origin time	Date	0611	0612	0613	0613	0616	0710	0718	0809	0816	0828	0905	0911	0630	1012	1014	1018	1025	1029	1030	1115	1124	1128	1214	1221	1221	0106	0114	0127	0215	0217	0219	0220	0221	0301
	Year	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1997	1997	1997	1997	1997	1997	1997	1997	1997

防災科学技術研究所研究報告 第65号 2004年3月

	Origin time		Latitude	Longitude	Depth	MUMA	Mo	Fc	Es	σ_{A}	Δσ	Duration
Year	Date	Time	(N)	(E)	(km)		(N - M)	(Hz)	(L)	(MPa)	(MPa)	(s)
1997	1206	1540	35.698	140.119	51.1	4.6	2.40E+16	0.895	1.53E+11	0.44	1.61	1.148
1997	1207	0802	35.747	140.105	43.2	4.2	8.38E+15	1.291	3.75E+10	0.31	1.68	0.795
1997	1207	0803	35.759	140.107	41.2	3.7	9.07E+14	2.916	4.47E+09	0.34	2.10	0.576
1997	1207	1250	37 407	141.513	76.1	5.3	1.83E+17	1 036	9.00E+12	3.39	18.95	1.770
1997	1230	1255	35.509	139.169	18.5	3.2	1.68E+14	4.204	1.27E+09	0.32	1.94	0.370
1998	0114	0217	35.584	140.244	73.1	4.9	5.07E+16	1.024	5.59E+11	0.76	5.07	1.677
1998	0116	1057	35.182	140.345	57.3	4.6	8.46E+15	2.588	3.46E+11	2.81	13.68	1.072
1998	0308	1346	36.095	139.866	49.2	4.4	9.34E+15	1 702	1.27E+11	0.94	4.29	0.883
1998	0409	1745	36.882	140.973	85.9	5.4	4.00E+17	0.712	1.48E+13	2.55	13.44	1.846
1998	0421	1927	34.950	139.153	8.7	4.1	4.82E+15	0.599	5.71E+09	0.05	0.16	1.096
1998	0422	0257	34.946	139.169	9.1	3.7	1.36E+14	3.640	5.39E+08	0.17	1.02	0.569
1998	0422	0258	34.949	139.162	9.1	3.8	6.81E+14	1.236	7.10E+08	0.04	0.20	0.610
1998	0422	0441	34.943	139.175	10.4	4.0	2.98E+15	0.857	3.73E+09	0.05	0.29	0.771
1998	0422	1040	34.948	139.169	10.3	4.0	2.16E+15	1.373	8.30E+09	0.16	0.86	0.712
1998	0422	1749	34.946	139.171	9.7	4.1	1.15E+15	1.520	4.51E+09	0.16	0.62	0.899
1998	0423	1103	34.945	139.173	10.1	3.8	4.15E+14	1.925	1.06E+09	0.11	0.46	0.668
1998	0425	1834	34.947	139.218	12.3	4.1	2.18E+15	1.959	2.63E+10	0.51	2.53	0.740
1998	0426	0737	34.954	139.161	8.8	4.7	6.76E+15	1.327	7.02E+10	0.43	2.45	1.303
1998	0426	1503	34.970	139.169	7.8	4.4	6.61E+15	1.098	3.24E+10	0.21	1.36	1.049
1998	0426	1800	34.875	139.165	8.9	4.1	1.36E+15	1 694	6.13E+09	0.19	1.02	0.949
1998	0426	1946	34.958	139.160	9.1	3.5	1.58E+14	2.482	3.37E+08	0.09	0.37	0.455
1998	0426	2202	34.941	139.167	9.4	4.0	1.92E+15	1.598	1.00E+10	0.22	1.21	0.733
1998	0427	0609	34.948	139.165	8.3	4.5	1.84E+16	0.653	4.40E+10	0.10	0.79	1.212
1998	0427	0706	36.088	139.885	46.7	4.0	1.14E+15	4.203	2.15E+10	1.30	7.90	0.605
1998	0427	2039	34.904	139.192	11.1	3.7	9.82E+14	1.269	1.29E+09	0.05	0.31	0.701
1998	0429	1515	36.204	140.035	49.5	3.7	3.38E+14	6.843	7.00E+09	1.42	10.11	0.431
1998	0503	1059	34.950	139.157	8.7	4.0	1.06E+15	1 362	2.22E+09	0.09	0.42	0.776
1998	0503	1109	34.961	139.154	6.9	5.7	4.63E+16	0.562	4.23E+11	0.38	1.27	2.997
1998	0505	1725	34.945	139.182	9.9	4.0	2.42E+15	1.115	6.00E+09	0.10	0.52	0.869
1998	0516	0345	34.968	139.931	68.2	4.8	3.35E+16	1.280	7.12E+11	1.46	6.55	1.293
1998	0608	0802	36.112	139.900	49.7	3.8	1.36E+15	3.355	1.45E+10	0.73	4.81	0.601
1998	0614	2217	35.417	140.814	41.5	5.6	3.09E+17	0.757	7.55E+12	1.68	12.54	2.966
1998	0624	2352	36.145	140.100	68.0	4.6	1.61E+16	1.151	1.46E+11	0.62	2.29	1.141
1998	0715	0109	36.101	139.910	47.4	4.4	7.94E+15	1.582	7 09E+10	0.61	2.94	1 020

防災科学技術研究所研究報告 第65号 2004年3月

Origin time		Latitude	Longitude	Depth	MJMA	οМ	Fc	Es	σ_{A}	Δσ	Duration
Date	Time	(N)	(E)	(km)		(N-M)	(Hz)	(L)	(MPa)	(MPa)	(s)
0717	1709	36.158	139.850	48.6	3.5	5.61E+14	4.101	5.67E+09	0.70	3.61	0.445
0719	0118	35.733	140.621	46.3	4.4	9.62E+15	1.025	3.74E+10	0.27	0.96	0.974
0720	1043	35.645	139.529	25.1	3.6	5.86E+14	3.145	2.69E+09	0.32	1.70	0.501
0731	1012	35.565	140.164	68.8	3.9	2.69E+15	1.520	6.56E+09	0.17	0.88	0.719
0829	0846	35.609	140.055	63.6	5.1	1.53E+17	0.884	5.57E+12	2.51	9.83	1.779
0914	0806	35.656	140.174	70.1	3.4	5.02E+14	2.456	1.15E+09	0.16	0.69	0.447
0914	1950	35.827	140.098	39.7	3.6	6.30E+14	1.855	1.64E+09	0.18	0.38	0.501
0914	2010	35.824	140.100	39.0	3.7	1.04E+15	1.848	4.95E+09	0.33	0.61	0.608
0924	0525	35.628	140.100	70.2	3.5	3.34E+14	2.920	7.38E+08	0.15	0.78	0.392
0925	0659	36.718	139.660	87.1	4.6	4.74E+15	1.527	2.16E+10	0.31	1.57	0.998
0928	0645	35.717	140.662	22.5	3.6	2.94E+14	4.266	4.84E+09	0.69	3.54	0.434
1007	2158	36.055	139.908	45.1	3.4	1.33E+14	8.077	1.61E+09	0.84	6.52	0.432
1019	0817	35.761	139.311	105.4	3.9	1.61E+15	3.168	2.80E+10	1.19	4.78	0.598
1101	0620	35.185	139.727	89.2	3.6	1.58E+15	1.966	5.45E+09	0.24	1.12	0.490
1105	0643	36.446	140.541	58.9	4.2	2.86E+15	2.497	2.55E+10	0.61	4.15	0.591
1116	0623	35.622	140.139	69.7	3.7	1.34E+15	1.852	3.84E+09	0.20	0.79	0.559
1124	0448	37.765	141.550	87.8	5.1	2.05E+17	1.326	1.69E+13	5.69	44.60	1.733
1124	1548	35.445	139.132	14.6	3.4	1.69E+14	4.786	1.95E+09	0.48	2.87	0.453
1124	1742	35.565	140.180	69.1	3.7	3.61E+15	1.306	5.34E+09	0.10	0.75	0.596
1128	0022	35.635	140.095	62.0	4.3	9.34E+15	1.619	1.19E+11	0.88	3.70	0.744
1129	2152	37.072	141.152	77.1	4.2	6.69E+15	3.991	4.55E+11	4.68	39.67	0.741
1203	0515	35.613	140.046	64.3	4.2	5.33E+15	1.850	7.27E+10	0.94	3.15	0.744
1205	0115	36.061	139.936	45.0	3.8	4.71E+14	3.004	2.00E+09	0.29	1.19	0.583
1222	1923	36.056	140.521	52.2	4.1	4.01E+15	1.145	1.68E+10	0.29	0.56	0.737
0201	0151	36.966	141.215	28.9	5.1	4.82E+16	0.743	2.58E+11	0.37	1.84	1.861
0419	0814	34.308	139.684	119.5	4.6	6.42E+15	3.053	1.05E+12	11.31	17.05	1.229
0425	1813	35.519	140.312	88.9	4.2	9.80E+15	1.493	1.12E+11	0.79	3.04	0.884
0504	0303	35.491	139.638	29.9	3.1	9.03E+14	2.853	6.04E+09	0.46	1.96	0.542
0617	2239	35.759	140.165	71.2	3.7	1.63E+15	1.883	4.76E+09	0.20	1.01	0.486
0627	1950	36.116	139.788	48.6	4.1	1.20E+15	3.384	1.20E+10	0.69	4.35	0.577
0715	0756	35.948	140.448	47.9	4.9	4.33E+16	0.743	1.81E+11	0.29	1.66	1.681
0722	1857	35.376	140.418	59.3	4.0	5.36E+15	1.342	2.08E+10	0.27	1.21	0.840
0804	0638	35.381	140.365	28.1	3.5	3.89E+14	5.329	4.46E+09	0.79	5.49	0.460
0809	0639	35.840	139.940	111.5	4.4	1.38E+16	1.640	2.86E+11	1.42	5.68	0.946

Duration	(s)	0.688	1.738	0.498	0.864	0.607	0.707	1.380	0.705
Δσ	(MPa)	4.71	7.07	2.48	0.98	8.18	1.17	6.27	2.55
σ_A	(MPa)	1.02	2.68	09.0	0.21	1.51	0.58	1.02	0.74
Es	(N)	3.76E+10	3.68E+12	1.06E+10	3.23E+10	1.76E+10	1.74E+10	1 13E+12	5.48E+10
Fc	(Hz)	2.712	0.929	2.804	0.999	4.783	1.826	0.958	1.752
Mo	(N-M)	2.53E+15	9.45E+16	1.21E+15	1.05E+16	8.02E+14	2.06E+15	7.64E+16	5.08E+15
MJMA		4.0	5.0	3.3	4.1	3.9	3.9	4.8	4.0
Depth	(km)	60.4	72.6	67.8	97.0	32.3	28.8	98.1	49.5
Longitude	(E)	139.810	140.179	140.160	140.503	140.488	140.495	140.770	139.869
Latitude	(N)	362.355	35.571	35.662	36.208	35.892	35.911	35.911	36.163
	Time	1827	0756	2324	0520	0237	0328	1406	0005
Origin time	Date	0811	0913	0925	1123	1204	1204	1204	1227
	Year	1999	1999	1999	1999	1999	1999	1999	1999

要 旨

足尾地域及び関東地域で行った強震観測の記録から、これらの両地域で発生する地震の震源パラメータを求める 為のスケーリング関係を以下のように求めた:

 $log T_{d} = (0.223 \pm 0.003) \cdot log M_{0} \pm (3.529 \pm 0.036)$ $log E_{s} = log M_{0} - (5.174 \pm 0.475)$ $log f_{c} = -3 log M_{0} + (15.927 \pm 0.674)$ $log [E_{s} / M_{0}] = (0.128 \pm 0.011) \cdot log M_{0} - (6.992 \pm 0.152)$

ここで, *Ta*, *M*₀, *E*_s 及び *f*_c は, 各々, 直達 S 波の長さ, 地震モーメント, 地震エネルギ, 及び, コーナ周波数を 示す. 上記のスケーリング関係の意味するところは, 足尾地域でより規模の大きな地震が発生したとき, その地震 の震源パラメータが推定され, 強震動予測が可能となると言うことである.

キーワード:足尾地域,震源パラメータのスケーリング関係,加速度震源スペクトル,強震観測,地中観測井記録