5. 被害状況把握手法の開発

5.1 航空写真を用いた画像解析および機械学習によ る被害状況把握手法の開発

5.1.1 概要

内閣府中央防災会議(2013)による南海トラフ巨 大地震の被害想定では,揺れにより約62~135万 棟に及ぶ全壊建物棟数が想定されている.このよう な大規模災害において,災害対応に係る各機関が被 害拡大防止のための対策を行い,復旧・復興を効率 的に進めるためには迅速な被害状況把握が必要であ る.

発災直後の広域にわたる被害状況を即時的に把握 する手段としては衛星や航空機,UAV(無人航空機) 等のリモートセンシング技術の活用が有効である. ここで、リモートセンシング技術を用いることによ り観測データを取得可能なタイミング、および観測 データを用いた情報を提供可能なタイミングは、手 法毎に異なる.それぞれの観測手段を用いた場合に おいて、地震発生直後から災害対応の時系列に沿っ て、観測記録やそれを用いた情報を提供可能なタイ ミングについて図 5.1.1-1 に整理する.

これらのリモートセンシング技術の中でも,固定 翼航空機を用いた調査は,衛星よりも高解像な画像 を取得可能で,かつヘリコプターや UAV よりも一 度の飛行で広域にわたる調査が可能である点で優れ ている.

1995年兵庫県南部地震においては小川・山崎 (2000)により航空写真を用いた建物被害調査が行わ れており,目視判読により被害を4段階に区分する 手法が示されている.その後,国内外の様々な地震 災害を対象として航空写真の目視判読やテクスチャ 解析等の画像解析手法を用いた調査が行われてい る.

2016年熊本地震では消防庁 (2018) によれば住家 全壊 8,668 棟に及ぶ甚大な建物被害が発生した.こ の地震においては発災直後から産官学の様々な機関 により多数の航空写真画像が取得された.これらを 用いた目視判読により,広域にわたり建物被害を4 段階に区分する調査が実施された.判読結果の詳細 については内藤ほか (2018a) により報告されている が,これらのデータ作成にあたっては多数の技術者 による人海戦術が必要であった. しかし,今後発生が想定される南海トラフ巨大地 震等の大規模災害において,このような目視判読を 即時的に実施することは,災害対応への活用を考え ると現実的ではない.

このような目的に資するリモートセンシング画像 を用いた即時的な状況把握を実現するため,画像解 析により建物被害を抽出する研究が実施されてい る.例えば人工衛星 SAR 画像の後方散乱強度を用 いた解析(松岡・山崎, 2002)や,航空写真を用いた テクスチャ解析(青木ほか, 2001)などがある

また,近年は大量のデータを用いた学習を繰り返 すことにより,時として人間を凌駕する高精度な判 別を行う深層学習(Deep Learning)の技術が発展して おり,このような先端技術を航空写真に適用し,建 物被害自動判別手法を開発することにより,これま で以上に即時的かつ高精度な被害判別が可能になる ことが想定される.なお,被災画像を用いて深層学 習により被害建物の抽出を行った研究例には石井ほ か(2018),釜ヶ谷ほか(2017)などがある.

ここで画像解析および機械学習手法を用いること により実現する状況把握のタイムラインを3つの開 発フェーズに分けて図5.1.1-2に示す.ここに示す ように,従来の手法では航空写真を用いた被害判読 完了までに数週間から数カ月程度要していたのに対 し,本研究開発手法を用いることで地震発生後3日 間程度での被害状況把握が可能になり,復旧に向け た災害対応を迅速化することが可能である.また, 将来,本手法を応用し,航空機搭載型のリアルタイ ム被害判別システムを開発することにより,さらに 迅速な被害状況把握が可能になる.

さらに、本開発手法により航空写真から抽出した 被害状況把握情報を活用し、5.2節で述べる、リア ルタイム被害推定情報の実被害情報を用いたベイズ 更新(日下ほか(2017))を行うことにより、被害推定 をより高精度化することが可能になる(図5.1.1-3).

以下では,(2)航空写真目視判読にもとづく機械 学習用データ作成,(3)画像解析手法を用いた被害 抽出,(4)機械学習による被害自動判別手法開発,(5) 被害自動被害判別手法の汎用化に向けた開発の順に 説明する.

図 5.1.1-1 地震発生直後からのリモートセンシング技術を用いた観測および情報提供のタイミング

図 5.1.1-2 従来の被害状況把握手法、本研究開発手法、および将来像それぞれにおける情報取得のタイムライン

図 5.1.1-3 本研究における航空写真を用いた状況把握による被害推定結果更新のイメージ

5.1.2 目視判読にもとづく機械学習用データ作成

本研究で用いる機械学習用データとしては 2016 年4月16日未明に発生した熊本地震本震直後に固 定翼航空機により撮影された垂直オルソ画像,およ びこれらの目視判読にもとづき被害程度を4段階に 区分した GIS データを使用した.

目視判読には主に3種類の垂直オルソ画像を使用 した.これらは株式会社パスコにより4月19日に 取得された,デジタルマルチラインセンサー (ADS) を用いて撮影された画像(198 図枠)およびデジタル エリアセンサー(UCX)により撮影された画像(447 図枠),さらに国土地理院により4月16日から20 日にかけて撮影された画像(1,228 図枠)から構成さ れる.また,各画像1 図枠のサイズは1.5 km×2 km であり,画像解像度は20 cm/pixel である.これら の画像の取得範囲を図 5.1.2-1 に示す.

これらの航空写真を用いて熊本市,宇土市,宇城 市,御船町,甲佐町,嘉島町,益城町,西原村,大 津町,阿蘇市,南阿蘇村の各市町村全域を対象とし, 全建築物1棟毎に目視判読を行い,被害を表5.1.2-1 に示す4段階に区分した.各被害区分を代表する画 像の例を図5.1.2-2に示す.なお,被害程度が大き い建物を確実に検出するため,益城町宮園地区等の 被害集中地域においては航空写真を用いて作成した 建物等の高さを含む標高モデルであるDSM (Digital Surface Model)の本震前後での差分データ,および 株式会社パスコによりヘリコプターを用いて斜めか ら撮影された画像を併用し,クロスチェックを行っ ている.

以上の手順により各建物の被害区分を実行後, 判読結果を,GISソフトを用いて航空写真を重ね た場合における各建物の中心点の位置にポイント データとしてプロットとした.このようにして合計 421,712棟分の被害判読ポイントデータを作成した. 作成したポイントデータの全域における分布を図 5.1.2-3に,および益城町周辺地域を拡大した図を図 5.1.2-4に示す.

次に、国土地理院が公開する基盤地図情報(建築物)(データ整備完了日:2014年6月23日~2016年6月16日)のポリゴンデータを用いて、GISソフト上で被害判読ポイントデータと建物ポリゴンとの突き合わせを行い、データを統合する突合処理を行った.このとき、1つのポリゴン内に複数の建物

が存在する場合は、その中で最も被害が大きい建物 の被害区分を代表させて入力した. 突合したポイン トデータおよびポリゴンデータの例を図 5.1.2-5 に 示す. このような手順により、判読ポイントデータ の約 76% にあたる 320,162 棟分のデータを建物ポリ ゴンに突合した. 以上の手順により被害レベル毎に 区分した建物棟数の内訳を表 5.1.2-2 に示す.

続いて,航空写真を用いて,建物構造および建築 年代の推定を行い,各建物ポリゴンに建物属性デー タとして入力した.入力範囲は図 5.1.2-6 に示すよ うに地震動によって大きな建物被害を受けた熊本市 中央区,東区,嘉島町,益城町,西原村,南阿蘇村 の全域である.

ここで,建物構造の推定には株式会社パスコが 2016年4月19日に撮影した航空写真を用いて,屋 根形状が切妻,寄棟,入母屋,越屋根など木造住宅 の特徴を表すものを木造とし,陸屋根などフラット な屋根をもつ建物や建築面積が大きい建物,あるい は基盤地図情報のデータの「種別」項目に「堅ろう建 物」もしくは「堅ろう無壁」と記載されている建物を 非木造とした.

図 5.1.2-1 目視判読に使用した航空写真の範囲

表 5.1.2-1 目視判読による被害区分

区分	判断基準(いずれかを満たす)
LEVEL1	航空写真では被害が確認できない
無被害	
LEVEL2	屋根瓦の一部が崩落
被害小	ブルーシート面積が屋根の半分未満
LEVEL3	屋根瓦の大半が崩落
被害中	壁面が落下
	ブルーシート面積が屋根の半分以上
LEVEL4	顕著な傾き、ずれ、ねじれ
被害大	層破壊または倒壊
	DSM 高さが本震前後で 3m 以上変化

- 119 -

図 5.1.2-2 被害区分を表す画像の例

図 5.1.2-3 作成した被害判読ポイントデータの分布

図 5.1.2-4 被害判読ポイントデータの分布(益城町付近)

また,建物年代の推定には国土地理院が公開して いる「国土画像情報(第一期:1974~1978年撮影)」 のデータを用いて(図 5.1.2-7),株式会社パスコが 2016年4月19日(本震後)に撮影した航空写真との 比較を行い,両方に同一と思われる建物が存在する 場合は「1978年以前」の建物とし,古い画像になく

図 5.1.2-5 突合したポイントおよびポリゴンデータ

++++		∧ ⇒i			
田町村	LEVEL1	LEVEL 2	LEVEL 3	LEVEL 4	合計
熊本市	169,758	45,563	5,222	254	220,797
宇土市	生市 8,077		258	0	12,477
宇城市	宇城市 14,277		272	61	20,587
御船町	5,398	2,516	603	28	8,545
甲佐町	1,148	779	87	3	2,017
嘉島町	3,400	968	397	171	4,936
益城町	9,650	2,607	1,639	1,456	15,352
西原村	757	240	109	28	1,134
大津町	10,469	2,985	315	21	13,790
阿蘇市	16,046	2,594	83	30	18,753
南阿蘇村	1,336	328	72	38	1,774
合計	240,316	68,699	9,057	2,090	320,162

表 5.1.2-2 被害区分を行った建物数(ポリゴン数)

本震後の画像に新しく建物が存在する場合(新築)も しくは建物の形状や色に地震被害以外の変化が確認 できる場合(建て替え)は「1979年以降」の建物と判 断した(図 5.1.2-8).

以上の手順により作成した属性データを市区町村 ごとにまとめると表 5.1.2-3 のようになる.

図 5.1.2-6 建物属性データの作成範囲

表	表 5.1.2-3 作成した建物属性データ数								
	木造	木造	非木造	非木造					
市町村	1978 年	1979 年	1978 年	1979 年					
	以前	以降	以前	以降					
熊本市	5,894	59,729	1,219	20,905					
(東区)	東区) 3,210		526	9,349					
(中央区)	2,684	24,970	693	11,556					
嘉島町	978	2,845	49	1,064					
益城町	2,718	9,625	185	2,824					
西原村	320	543	21	250					
南阿蘇村	486	1,016	41	231					
合計	10,396	73,758	1,515	25,274					

図 5.1.2-8 航空写真(2016年4月19日撮影)

図 5.1.2-7 国土画像情報(1974~1978年撮影)

5.1.3 画像解析手法を用いた被害抽出

地震後に取得されたリモートセンシング画像を用 いて,被害を自動抽出する手法に関する研究には三 冨ほか(2002),三浦ほか(2012)などがある.本研究 においては熊本地震本震発生直後の2016年4月20 日に株式会社パスコにより撮影された益城町宮園地 区周辺の航空写真1図枠(図5.1.3-1)を用いて,以下 に示す4通りの手法による被害抽出を行い,各手法 によって抽出された被害指標との比較を行った.

なお、この地域の航空写真を使用した理由は地表 地震断層近傍の被害集中地域であり、被害区分毎の 建物数が比較的均一であるためである(表 5.1.3-1).

①エッジ解析

地震により倒壊等の被害を生じた建物は外形が変 化する為,建物の境界(エッジ)を抽出し,これを地 震前に取得された建物の輪郭データと比較すること により被害抽出が可能であることが予想される.

本研究では本震後の航空写真から作成した数値表 層モデル (DSM) のデータを用いて建物輪郭を強調 した画像を作成し,建物ポリゴンと重ね合わせを実 施した上で,目視判読における被害区分と建物エッ ジとの関係について整理した(図 5.1.3-2). まず,航空写真のステレオマッチングにより,建 物等の地表物を含む標高データである DSM を作成 した(図 5.1.3-3).次に,DSM に対して 8 近傍の画像 強調フィルタ,8 近傍のラプラシアンフィルタ,3×3 の最小値フィルタの順にフィルタリング処理を行い, 建物輪郭を抽出した画像を作成した(図 5.1.3-4).

続いて,建物の輪郭を抽出した画像に対し,設定 した閾値(-0.9)より小さい画素を抽出することによ り2値化を行った画像データを作成し,GISソフト を用いて建物輪郭のラインデータおよびポリゴン データを作成した(図 5.1.3-5).

以上の手順により作成した建物輪郭ポリゴンと, 国土地理院が公開する基盤地図情報(建築物)を重ね 合わせた(図 5.1.3-6). ここで,各建築物ポリゴンに 占める建物輪郭ポリゴンの面積割合をヒストグラム で表現すると図 5.1.3-7 のようになり,特に被害区分 がLEVEL4の建物において,建築物ポリゴンに占め る輪郭ポリゴンの面積割合が10%以下になるものが 多く,中央値が小さくなることを確認することがで きる(表 5.1.3-2).従って,輪郭ポリゴンの面積割合 は全壊・倒壊した建物の検出指標として有効と考え られる.一方,LEVEL1~LEVEL3の被害区分にお いては面積割合に大きな違いは確認できなかった.

表 5.1.3-1 益	よ城町宮園地区周辺の航空写真における被害区分毎建物数
-------------	----------------------------

LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計
1,257	523	745	691	3,216

図 5.1.3-1 益城町宮園地区における航空写真 (株式会社パスコ撮影)

図 5.1.3-2 建物エッジ解析手順

図 5.1.3-3 宮園地区における本震後の DSM

図 5.1.3-4 フィルタリング処理

図 5.1.3-5 建物輪郭ライン・ポリゴン化

図 5.1.3-6 建物輪郭と建築物ポリゴンとの重ね合わせ

表 5.1.3-2 被害区分毎の輪郭ポリゴン面積割合(%)

	最小値	最大値	平均值	中央値
LEVEL1	0	100	54.5	66.5
LEVEL2	0	100	53.8	65.6
LEVEL3	0	100	53.4	64.3
LEVEL4	0	100	26.2	1.0

② テクスチャ解析

地震による倒壊,および瓦屋根の落下等の要因に より,画像の肌理(テクスチャ)が変化する(粗くな る)ことが予想される.

本研究では航空写真を単色に変換後, ラプラシア ンフィルタおよび GLCM の2通りのテクスチャ解 析を行い, 被害区分とテクスチャとの関係について 整理した(図 5.1.3-8).

ラプラシアンフィルタを用いたテクスチャ解析に おいては、RGB3 バンドの航空写真画像を1バンド に変換後(式(5.1.3-1))、8 近傍のラプラシアンフィ ルタ(式(5.1.3-2))を用いて画像全域において積和演 算を行った(式(5.1.3-3)).なお、ラプラシアンフィ ルタを用いた積和演算は画像に対して2回微分を行 うことに相当し、隣接画素が急激に変化する箇所 (エッジ)の抽出に優れた特性をもつ.次に、国土地 理院が公開する基盤地図情報(建築物)ポリゴンを用 いて建物毎にラプラシアンフィルタを適用した画像 に対して輝度値の標準偏差を計算した.なお、ラプ ラシアンフィルタ画像の標準偏差はテクスチャが粗 いほど大きな値を示すテクスチャ指標である.

$$I(x, y) = (R + G + B)/3$$
 (5.1.3-1)

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
(5.1.3-2)

$$I'(x, y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} K(i, j) I(x+i, y+j)$$
(5.1.3-3)

続いて、GLCM (Gray Level Co-occurrence Matrix) を用いたテクスチャ解析においては、式(1)により 1 バンドに変換した画像に対して5×5のウインド ウ毎に、隣接する画素値のペアの出現頻度を全ての ペア数で正規化した行列(GLCM)を、0度、45度、 90度、135度の4方向について計算し、各方向の ASM (角二次モーメント)(式(5.1.3-4))を計算する. 次に、4方向のASMの平均値をウインドウの中心 に代入する.これらの手順を画像全域に対して繰り 返し、GLCM 画像を作成する(図 5.1.3-9).このよう にして作成された GLCM 画像は、隣接する画素間 のばらつきが大きい程暗くなり、ばらつきが小さい 程明るくなる特徴を示すため、画像内のテクスチャ を抽出する指標となる.次に,国土地理院が公開す る建築物ポリゴンを用いて建物毎に GLCM 画像に 対して輝度値の平均値を計算した.

$$ASM = \sum_{i,j=0}^{255} P_{i,j}^{2}$$
(5.1.3-4)

ここで,各テクスチャ解析手法を用いて作成された画像の例を,被害区分がLEVEL1(図 5.1.3-10)およびLEVEL4(図 5.1.3-11)の場合においてそれぞれ示す.これをみると建物被害に伴うテクスチャ特徴の違いが各手法において明瞭に抽出されていることがわかる.

以上の2つの方法それぞれを用いて,建物毎に抽 出したテクスチャ特徴を被害区分毎に集計したヒス トグラムを作成した.

ラプラシアンフィルタを用いた場合のテクス チャ指標(ポリゴン内標準偏差)のヒストグラムは 図 5.1.3-12 のようになり, LEVEL1, LEVEL2 に比 べて LEVEL3, LEVEL4 においてテクスチャ指標の 中央値が大きくなることを確認することができる (表 5.1.3-3).

また,GLCM を用いた場合においては,被害区分 毎に集計したテクスチャ指標 (ASM のポリゴン内平 均値)のヒストグラムを作成すると図 5.1.3-13 のよ うになり,LEVEL1 は他に比ベテクスチャ指標の中 央値が高く,被害レベルが大きくなるにつれて中央 値が小さくなることが確認できる(表 5.1.3-4).

以上のことから、2つのテクスチャ解析手法を用いた場合それぞれにおいて、被害レベルとの相関が 確認できるため、これらのテクスチャ解析指標は被 害抽出に有効であると考えられる.

図 5.1.3-8 テクスチャ解析手順

図 5.1.3-10 LEVEL1 建物におけるテクスチャ解析画像

図 5.1.3-11 LEVEL4 建物におけるテクスチャ解析画像

図 5.1.3-13 GLCM を用いた被害区分毎のテクス チャ指標(ASM 平均値)ヒストグラム

/									
	最小値	最大値	平均值	中央値					
LEVEL1	10.5	90.2	41.5	40.6					
LEVEL2	11.3	89.4	39.8	39.1					
LEVEL3	14.9	82.8	47.2	47.1					
LEVEL4	16.6	78.1	49.9	50.2					

表 5.1.3-3 ラプラシアンフィルタを用いた場合の被害区 分毎のテクスチャ指標(標準偏差)

③ ブルーシート抽出

地震により被害を受けた建物には、雨漏りや風の 侵入を防ぐ等の目的でブルーシートがかけられるこ とが多い.このブルーシートは視覚的に明瞭な特徴 を持つため、画像解析により抽出可能である.

本研究では航空写真に対して領域分割処理を実施後, RGB 画像を HSV 色空間に変換し, 閾値を設定 することにより,ブルーシート領域の自動抽出を 行った(図 5.1.3-14).

ここで、領域分割処理とは画像を同様な色をもつ 複数の領域に分割する処理である.本研究ではオブ ジェクトベースのマルチスケール領域分割手法(本 田ほか (2016))を用いて、航空写真画像の領域分割 を行った(図 5.1.3-15).

次に,領域分割した画像から目視によりブルー シートと判断できる領域50個を選択し,これを 元にHSV 色空間(H: 色相,S:彩度,V:明度)を 設定することによりブルーシート領域を抽出した (式(5.1.3-5)~(5.1.3-8)).なお,式(5.1.3-8)ではハ レーション(強い太陽光による反射等)の影響を防 ぐため V と S との関係を元に線形近似した直線に おいて,±1σの範囲を超えるデータを除外している (図 5.1.3-16).

$209 \leq H \leq 246$	(5.1.3-5)
$33 \leq S \leq 173$	(5.1.3-6)
$140 \leq V \leq 236$	(5.1.3-7)
V>-0.122S+212.42	(5.1.3-8)

続いて,抽出したブルーシート領域と建築物ポリ ゴンを重ね,両者が重なる領域のみを抽出した.以 上の手順により建物内ブルーシート領域を抽出した (図 5.1.3-17).

次に,抽出した建物内ブルーシート領域が各建物 ポリゴンに占める面積比率を計算し,対象とする区 域内からブルーシートに被覆されている建物のみ抽 出し,被害区分毎に集計したヒストグラムを作成し

表 5.1.3-4 GLCM を用いた場合の被害区分毎のテクス チャ指標(ポリゴン内平均値)

	最小値	最大値	平均值	中央値
LEVEL1	39.9	244.3	137.4	136.2
LEVEL2	40.8	253.8	120.0	117.0
LEVEL3	29.6	215.5	88.1	83.6
LEVEL4	34.1	236.0	86.0	80.2

た (図 5.1.3-18, 表 5.1.3-5). ただしこの場合, 建物 面積が 1 m² 未満の建物や, 目視によりブルーシー トを誤抽出していることが明らかなポリゴンを除外 した計 519 棟を対象としている.

ヒストグラムを見ると、建物内ブルーシート領域 面積比率は被害区分 LEVEL3 までは被害レベルが大 きくなるほど高い中央値を示すことがわかる. この ことから、ブルーシート領域面積比率はこれら中間 の被害レベルの抽出に有効な指標であるといえる. しかし、LEVEL4 になると中央値が低下する. これ は、倒壊した建物内に居住することは危険であるた め、ブルーシートがかけられなくなることが影響し ていると考えられる.

図 5.1.3-14 ブルーシート領域の抽出手順

図 5.1.3-15 画像の領域分割

図 5.1.3-16 (5.1.3-8) 式における処理

図 5.1.3-17 抽出した建物内ブルーシート領域

図 5.1.3-18 ブルーシート領域面積比率のヒストグラム

	棟数	最小値	最大値	平均值	中央値
LEVEL1	39	0.1	23.0	3.5	1.2
LEVEL2	93	0.1	99.1	14.5	9.2
LEVEL3	300	0.1	86.6	32.8	31.9
LEVEL4	87	0.1	80.0	19.6	

表 5.1.3-5 被害区分毎に集計した建物内ブルーシート面積比率

DSM 高さ変化量

航空機を用いた写真測量により,建物や木等の 地物を含む標高データである Digital Surface Model (DSM)を取得することができる.従って,地震前と 地震後の航空写真からそれぞれ作成した DSM の差 分をとり,建物毎に抽出することにより,地震に伴 い傾斜した,あるいは倒壊した建物を識別すること が可能であると考えられる.

本研究では地震前の高さデータとして,2005年に 国土地理院が計測した航空レーザー測量データを用 いて 50 cm 解像度の DSM を作成した.また,本震 後の高さデータとして株式会社パスコが4月20日 に撮影した航空写真を用いてステレオマッチング手 法により 50 cm 解像度の DSM を作成し(図5.1.3-19), GIS ソフトを用いてこれらの DSM の差分画像を作 成した(図5.1.3-20).

さらに,DSM 差分画像と国土地理院が公開する 基盤地図情報(建築物)ポリゴンを重ね合わせ,建物 ポリゴン単位で高さ変化量を集計後,建物ポリゴン 内の平均値を建物ポリゴンの属性情報として入力し た(図 5.1.3-21).

建物ポリゴン毎に抽出した DSM 差分を用いて 被害区分毎に集計したヒストグラムを作成する と、LEVEL1 ~ LEVEL3 には差がみられないが、 LEVEL4 建物において DSM 差分の中央値が約 1.5 m となっており、建物の高さが低下していることを確 認できる(図 5.1.3-22、表 5.1.3-6). この結果から倒 壊建物の抽出に DSM 差分が活用可能なことが示さ れた. ただし、建物面積が 10 m² 未満, DSM の平 均値が負(高さ上昇)の建物ポリゴンについては集計 対象から除外している.なお,高さが上昇した建物 は,地震前のデータ取得後に新築もしくは改築され た建物であることを新旧の航空写真の比較により確 認している.

⑤ 画像解析による被害抽出手法のまとめ

以上述べてきたように、4つの画像解析手法を用いて被害抽出を行い、航空写真目視判読にもとづく 被害区分との比較を行った。4手法の特徴を整理す ると、エッジ解析および高さ変化量はLEVEL4 建物 の抽出指標として有効である。また、ブルーシート 抽出は LEVEL2、LEVEL3 建物を抽出する指標とし て有効である。さらに、テクスチャ解析指標は被害 レベルと相関があることを確認することができた。

このように,各手法により抽出可能な被害程度は 異なるが,これらを組み合わせて活用することによ り,より高精度な被害識別が可能になるものと考え られる.例えば高さ変化量が0.5 m以上の建物に対 してラプラシアン画像を用いたテクスチャ解析を行 うことにより,LEVEL4 建物の抽出率が向上するこ とが確認出来る(図5.1.3-23,表5.1.3-7).

以上のことから,画像解析手法を活用し,目視判 読を補完することにより,迅速かつ高精度な建物被 害識別が可能であると考えられる.なお,より広範 囲を対象とした分析,および複数の画像解析手法を 組み合わせた場合の被害識別性能についての詳細は 内藤ほか(2018b)により報告されている.

図 5.1.3-19 本震後の航空写真から作成した DSM

図 5.1.3-20 DSM 差分画像の作成

図 5.1.3-21 建物ポリゴン毎の DSM 差分抽出

図 5.1.3-22 地震前と本震後の DSM 差分ヒストグラム

図 5.1.3-23 テクスチャ解析による LEVEL4 抽出率 (点線)および DSM 差分閾値を設定した 場合の抽出率(赤線)

表 5.1.3-6 被害区分毎の DSM 差分 (m) の集計値

	棟数	最小值	最大値	平均值	中央値
LEVEL1	924	0.00	4.10	0.49	0.39
LEVEL2	442	0.00	3.25	0.49	0.41
LEVEL3	643	0.00	3.64	0.44	0.37
LEVEL4	680	0.01	5.07	1.57	1.51

表 5.1.3-7 DSM 差分閾値の有無によるラプラシアンフィ ルタ画像の標準偏差を用いた LEVEL4 抽出率 の違い

	DSM 差分	▶を使わた	よい場合	DSM 差	分を使	う場合
閾値 (下限)	LEVEL 4 棟数 (A)	全棟数 (B)	抽出率 (A/B)	LEVEL 4 棟数 (A)	全棟数 (B)	抽出率 (A/B)
0	439	3,312	13%	415	1,249	33%
20	438	3,241	14%	414	1,231	34%
25	437	3,095	14%	413	1,188	35%
30	434	2,867	15%	410	1,115	37%
35	423	2,550	17%	400	1,006	40%
40	396	2,115	19%	376	877	43%
45	338	1,613	21%	321	694	46%
50	245	1,075	23%	234	480	49%
55	165	645	26%	158	282	56%
60	83	328	25%	81	145	56%
65	27	146	18%	26	55	47%
70	6	65	9%	6	17	35%

5.1.4 機械学習による被害自動判別手法開発

本研究では,航空写真の目視判読によって被害区 分を4段階に区分したGISデータを教師データとし, 多数の航空写真を用いた機械学習により建物被害を 表 5.1.4-1 に示す4段階に区分する手法を開発した.

機械学習手法は,画像認識分野で高い識別性能が 確認されている2通りの手法を用いてそれぞれ開発 し,比較検討を行った.具体的には,画像から局所 特徴量を抽出し SVM により分類する手法,および 畳み込みニューラルネットワーク (CNN)を用いた 深層学習の2通りである.以下,①学習用データ作 成手法,②局所特徴量および SVM を用いた手法, ③深層学習を用いた手法,④被害判別精度の検証, ⑤被害判別結果の表現方法の順に,それぞれの開発 手法について説明する.

① 学習用データ作成手法

学習用データとしては熊本地震本震後の2016年4 月19日に株式会社パスコがデジタルマルチライン センサーシステム (ADS) により撮影した解像度20 cm/pixelの画像を使用した.対象地域は被害集中域 である益城町宮園地区周辺の航空写真1図枠分であ る.

まず,目視判読にもとづく被害区分を元に建物ポ リゴン毎に LEVEL1 を緑,LEVEL2 を黄,LEVEL3 を橙,LEVEL4 を赤に色分けし,建物以外の部分を 黒で塗りつぶしたマスク画像を作成した(図 5.1.4-1).

次に,航空写真およびマスク画像全体を,平均的 な住家1棟の大部分が含まれる大きさである 80pixel 四方のパッチごとに走査幅 20pixel でスキャンし, パッチ内に建物が 30% 以上含まれる場合に,その 画像を建物の各被害区分における学習データとして 抽出した.また,パッチ内およびその周辺 40pixel の範囲に建物が含まれない場合には非建物の学習 データとして抽出した(図 5.1.4-2).以上の手順によ り,表 5.1.4-1 に示す合計 132,574 枚のパッチ画像を 抽出後,各クラスのデータ数が均等になるようにラ ンダムに間引き処理を行い,各区分 2,500 枚ずつの パッチ画像を機械学習に使用した.

図 5.1.4-1 学習用マスク画像

図 5.1.4-2 航空写真から抽出した学習用パッチ画像の例

表 5.1.4-1 熊本地震における宮園地区周辺の航空写真から取得した被害区分別学習データ数

	非建物	LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計
抽出パッチ画像数	100,087	13,008	4,537	7,237	7,705	132,574
使用パッチ画像数	2,500	2,500	2,500	2,500	2,500	12,500

② 局所特徴量および SVM を用いた手法

画像を用いた機械学習手法の1つとして,画像か ら局所特徴量を抽出後,分類器により識別境界を設 定する方法がよく用いられている.

本研究では局所特徴量抽出手法としてスケール変 化,回転,照明の変化に対して頑健な SIFT(Lowe, D.G, 2004)を使用し,学習用パッチ画像から等間隔 にサンプリングした特徴点毎に,2つの異なる半径 (20, 40pixel)の SIFT 特徴量を算出した(図 5.1.4-3).

次に,全特徴点の SIFT 特徴量 (256 次元の特徴ベ クトル)をクラスタリングにより 1,000 個の重心に 分割することにより作成したコードブックを基準と して,特徴点毎に最近傍コードブックの出現頻度を 集計したヒストグラムを作成した.この手法は単語 の順番を無視して出現頻度により文書の分類を行う 文書管理手法である Bag of Words を画像認識に応 用し,局所特徴の位置関係を無視して,特徴量の位 置変化に対して頑健な分類を実現させた手法であ り, Bag of Visual Words もしくは Bag of Keypoints (Csuruka G. et al., 2004) と呼ばれる(図 5.1.4-4).

さらに、クラス間距離 (マージン)を最大化する ことにより識別境界を設定する分類手法である Support Vector Machine (SVM)を用いて、LEVEL1 ~ 4 および非建物を含む計 5 クラスの識別境界を設定 した (図 5.1.4-5). なお、クラス識別に際しては非 線形の境界設定が可能な RBF カーネル (Radial Basis Function Kernel)を使用して、正則化係数 C および RBF カーネルパラメータッのチューニングを行い、 最適な分類境界を設定した.

また、特徴抽出から分類に至るアルゴリズム開発 にはオープンソースの画像解析ライブラリである OpenCV を用いて C++ 言語により環境構築した.

なお、本稿ではこの手法を熊本地震本震直後に撮影された垂直航空写真を用いた建物被害識別に適用 するが、同じく熊本地震本震後に自動車から撮影された走行調査画像を用いて、側面から見た建物被害 箇所を抽出することも可能であることが示されている(Naito *et al.*, 2018).

1次特徴量の格子サンプリング間隔

図 5.1.4-4 Bag of Visual Words による特徴抽出

③ 深層学習を用いた手法

近年,様々な分野において深層学習を用いたシス テムが開発され,多数の教師データを用いた学習に より,時として人間の判断を凌駕する性能を発揮す ることが指摘されている.

本研究では、画像を用いた物体認識分野において 高い識別性能が確認されている畳み込みニューラル ネットワーク (Convolutional Neural Network, CNN) を用いて、航空写真から抽出した画像から建物被害 識別を行うアルゴリズムを開発した(図 5.1.4-6).

構築した CNN は VGG (Simonyan K., 2014)を基本とし、使用したパッチ画像サイズに合わせて層の深さを浅くしたものを使用した.また、Convolution層の後にBatch Normalization層を加えることにより、ミニバッチ(1サイクルの学習に使う訓練データの集合)毎に正規化を行い、バッチ間でのばらつきを抑制した. CNN のパラメータを表 5.1.4-2 に、構築した CNN モデルを表 5.1.4-3 に示す.

ここで、本研究において構築した学習用データは、 1 図枠の航空写真毎に画像の左上から順に作成して いるため、学習時に近傍のパッチ画像が同じミニ バッチに含まれる可能性がある.従って、このまま のデータ順で学習を行うと、ミニバッチ毎に各分類 の特徴量が偏るため、判別モデルが悪化する.そこ で、ミニバッチ毎の偏りを防ぐため、学習データの シャッフル(入れ替え)を行った(図 5.1.4-7).

さらに、繰り返し学習を行うにあたり、1 エポッ ク(ミニバッチを使い切る学習サイクル1回分)内で 序盤に学習したデータが最終的な識別にあまり反映 されない現象がみられる.このような学習の順番が 識別性能へ依存することを避けるため、1 エポック 終了する都度、ミニバッチの順番入れ変えを行った (図 5.1.4-8).

以上の手順により、学習データの偏りを防ぎ、航 空写真から切り出したパッチ画像単位の建物被害判 別に最適なプログラムを構築した.なお、深層学習 ライブラリとしては MXNet を使用し、C++ 言語に よりプログラミングを行い、被害判別アルゴリズム を構築した.

図 5.1.4-6 深層学習を用いた建物被害区分の概要

パラメータ	設定値
活性化関数	ReLU
ミニバッチサイズ	100
最適化手法	Adam
学習係数	1e-3
重み減衰	1e-9
試行回数	200 epoch

表 5.1.4-2 CNN のパラメータ

表 5.1.4-3 使用した CNN モデル

	layer	size	patch	stride	activation function
	入力	80 imes 80 imes 3			
	Conv	80 imes 80 imes 64	3×3	1	ReLU
	BN	80 imes 80 imes 64			
	Conv	80 imes 80 imes 64	3×3	1	ReLU
	BN	80 imes 80 imes 64			
	Pool	40 imes 40 imes 64	2×2	2	
	Conv	40 imes 40 imes 128	3×3	1	ReLU
2	BN	40 imes 40 imes 128			
	Conv	40 imes 40 imes 128	3×3	1	ReLU
	BN	40 imes 40 imes 128			
	Pool	20 imes 20 imes 128	2×2	2	
	Conv	20 imes 20 imes 256	3×3	1	ReLU
	BN	20 imes 20 imes 256			
3	Conv	20 imes 20 imes 256	3×3	1	ReLU
	BN	20 imes 20 imes 256			
	Conv	20 imes 20 imes 256	3×3	1	ReLU
	BN	20 imes 20 imes 256			
	Pool	$10 \times 10 \times 256$	2×2	2	
	Conv	$10 \times 10 \times 512$	3×3	1	ReLU
	BN	$10 \times 10 \times 512$			
4	Conv	$10 \times 10 \times 512$	3×3	1	ReLU
	BN	$10 \times 10 \times 512$			
	Conv	$10 \times 10 \times 512$	3×3	1	ReLU
	BN	$10 \times 10 \times 512$			
	Pool	$10 \times 10 \times 512$	2×2	2	
	Conv	$10 \times 10 \times 512$	3×3	1	ReLU
	BN	$10 \times 10 \times 512$			
5	Conv	$10 \times 10 \times 512$	3×3	1	ReLU
	BN	$10 \times 10 \times 512$			
	Conv	$10 \times 10 \times 512$	3×3	1	ReLU
	BN	$10 \times 10 \times 512$			
6	Pool	$5 \times 5 \times 512$	2×2	2	
\bigcirc	FC	$1 \times 1 \times 4096$			ReLU
	DO	$1 \times 1 \times 2048$			
8	FC	$1 \times 1 \times 5$			Softmax

(Conv: Convolution 層, Pool: Pooling 層, BN: Batch Normalization 層, FC: Fully Connected 層, DO: Dropout)

④ 被害判別精度の検証

表 5.1.4-1 に示した学習用データを用いて, SVM を用いた手法および深層学習を用いた手法それぞれ において機械学習を行い,それぞれの場合における 判別精度を 10 分割交差検証法により比較した.

具体的にはまず,各クラス2,500枚のパッチ画像 を10分割し,そのうち1つのグループである250 枚を検証用データ,残りの2,250枚を学習用データ として分割した.次に,学習用データを用いて学習 後,検証用データを用いて被害判別を行った場合に おいて,目視判読による被害判別と判別結果が一致 した場合に正解とみなし,クラス毎の検証用データ に占める正解数の比率を判別精度とした.続いて, 分割した別のグループから検証用データを取得し, 残りのグループを用いた学習を行う,という一連の 手順を全てのグループについて行った.

以上のような交差検証法により,同一の学習デー タを用いて,それぞれの機械学習手法による学習お よび判別を実施した.SVMを用いた場合の自動判 別結果と目視判読結果との比較を表5.1.4-4に,深 層学習を用いた場合の自動判別結果と目視判読結果 との比較を表5.1.4-5に示す.

これらの結果を見ると,建物全被害区分における 判別精度はSVMを用いた場合に約52.2%であるの に対し,深層学習を用いた場合は約86.4%と高い値 を示し,同じデータセットを用いた場合の識別性能 は深層学習を用いた場合において優位性があること を確認することができた.

表 5.1.4-4 SVM による判別と目視判読結果の比較

			SVM	こよる自動	」判別		스크	些 庄 (0/)
	非建物 LEVEL1 LEVEL2 LEVEL3 LEVEL4							相戊(%)
	非建物	1,860	163	92	58	327	2,500	74.4
E	LEVEL1	248	1,289	496	259	208	2,500	51.6
視	LEVEL2	139	262	975	661	463	2,500	39.0
判読	LEVEL3	51	93	303	1,509	544	2,500	60.4
нли	LEVEL4	140	112	284	518	1,446	2,500	57.8
	合計	2,438	1,919	2,150	3,005	2,988	12,500	52.2

表 5.1.4-5 深層学習による判別と目視判読結果の比較

			深層学習	習による自	動判別		스쿼	精度(%)
		非建物	LEVEL1	LEVEL2	LEVEL3	LEVEL4	百百二	相及(%)
	非建物	2,409	44	15	1	31	2,500	96.4
E	LEVEL1	32	2,023	383	1	61	2,500	80.9
視	LEVEL2	9	195	2,137	62	97	2,500	85.5
判読	LEVEL3	2	1	95	2,310	92	2,500	92.4
μu	LEVEL4	28	53	117	132	2,170	2,500	86.8
	合計	2,480	2,316	2,747	2,506	2,451	12,500	86.4

⑤ 被害判別結果の表現方法

以上の手順により構築した深層学習による被害判別モデルを用いて被害判別結果の空間分布を可視化することを考える.図5.1.4-9は構築した被害判別 モデルを用いて、80pixel四方のパッチ毎に20pixel 走査幅で画像全域に対し左上から右下までラスタス キャンを行い、自動被害判別を実施するイメージを 示している.この場合、走査幅である20pixel四方 のセル毎に16個の被害判別結果がオーバーラップ することになる.そのため本研究では、例えば1つ のセルの判別結果が[1011201110111211]で あった場合、最頻値である[1]をそのセルの判別結 果とみなす.なお、セルごとの被害判別結果のイメー ジを図5.1.4-10に示す.

このような手順により算出された被害判別結果 を国土地理院の建物ポリゴンと重ね合わせると図 5.1.4-11 のようになる.これを見ると、1つの建物 ポリゴン内に異なる被害区分の領域が存在すること が分かる.

発災直後の被害状況把握においては,被害区分毎 の建物棟数を認識することが重要であるため,本研 究では建物ポリゴン内の各被害区分の面積比率に 応じて建物単位の被害区分を算出する手法を開発 した.面積比率の閾値設定に際しては,図5.1.4-12 に示す範囲の熊本地震本震後に取得された航空写 真20図枠から作成した検証用建物ポリゴンデータ 28,544個(目視判読結果の内訳はLEVEL1:18,772個,

図 5.1.4-9 画像のラスタスキャン

LEVEL2:5,825 個, LEVEL3:2,502 個, LEVEL4:1,445 個)を用いて,各ポリゴン内に含まれる被害領域に 対するポリゴンの面積比率により,各被害区分の閾 値を設定した.具体的にはまず,表5.1.4-6 に示す ように被害区分の識別基準を設定した.なお,識別 は被害レベルの順番,つまり LEVEL4, LEVEL3, LEVEL2, LEVEL1 の順に行う.

表 5.1.4-7 から表 5.1.4-14 は各被害区分の閾値を それぞれ 5%, 10%, 30% の 3 つの組み合わせによ り変化させた場合における判別精度を比較したも のである.これらの結果を元に,表 5.1.4-14 に示す ように 4 被害区分全体の判別精度が最も高くなる CASE:8 における閾値を設定した.この場合におけ る全被害区分の判別精度は約 71.8% となった.

上記手順により,深層学習を用いた被害判別アル ゴリズムを用いて益城町宮園地区周辺の航空写真1 図枠分の被害判別を行った.その結果,20pixel毎 の被害判別結果の最頻値を用いたセル単位の被害判 別結果は図 5.1.4-12 のようになり,これを用いた建 物ポリゴン単位の被害判別結果は図 5.1.4-13 のよう になった.これらの結果を図 5.1.4-1 に示した同一 地域の目視判読結果と比較すると,被害集中域の分 布や全体的な被害程度等の特徴をよく抽出できてい ることがわかる.

また, 建物ポリゴン単位の被害判別結果は表 5.1.4-15 のようになり, 全被害区分の判別精度は約 69.1% であった.

図 5.1.4-10 被害判別結果のイメージ

図 5.1.4-11 判別結果とポリゴンの重ね合わせ

表5.1.4-6 建物ポリゴン内における被害領域の面積比に 応じて設定した閾値および対応する被害区分

被害区分	識別基準	閾値
LEVEL1	それ以外	-
LEVEL2	LEVEL2 が T2(%)以上	T2=30
LEVEL3	LEVEL3 が T3(%)以上	T3=10
LEVEL4	LEVEL4 が T4(%)以上	T4=10

表 5.1.4-7 (CASE:1) T2=T3=T4=5(%)の場合

		建物ボ	『リゴン単位	位の自動	스 크니	精度	全ク	ラス	
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
目	LEVEL1	12,288	5,005	503	976	18,772	65.46		
視	LEVEL2	1,108	3,589	591	537	5,825	61.61	10 107	64.56
判	LEVEL3	197	442	1,325	538	2,502	52.96	18,427	
読I	LEVEL4	70	90	60	1,225	1,445	84.78		

表 5.1.4-8 (CASE:2) T2=T3=5,T4=10(%)の場合

		建物ホ	ポリゴン単位	位の自動	스 키	精度	全ク	' ラス	
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
E	LEVEL1	12,372	5,061	509	830	18,772	65.91		
衫	LEVEL2	1,115	3,629	617	464	5,825	62.30	19 570	65.06
半	LEVEL3	206	454	1,359	483	2,502	54.32	16,570	05.00
郬	tevel4	72	96	67	1,210	1,445	83.74		

表 5.1.4-9 (CASE:3) T2=T3=5,T4=30(%)の場合

		建物ホ	ポリゴン単位	位の自動	스 크티	精度	全ク	'ラス	
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	台計	(%)	正解数	精度(%)
E	LEVEL1	12,560	5,182	537	493	18,772	66.91		
衫	LEVEL2	1,149	3,734	659	283	5,825	64.10	10 002	66 16
半	LEVEL3	226	501	1,449	326	2,502	57.91	10,000	00.10
彭	E LEVEL4	95	116	91	1,143	1,445	79.10		

表 5.1.4-10 (CASE:4) T2=5,T3=10,T4=5(%)の場合

		建物ボ	ポリゴン単位	位の自動	스크니	精度	全ク	/ ラス	
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
目	LEVEL1	12,339	5,061	396	976	18,772	65.73		
視	LEVEL2	1,114	3,656	518	537	5,825	62.76	19 507	64.01
判	LEVEL3	200	457	1,307	538	2,502	52.24	18,327	04.91
読	LEVEL4	70	97	53	1,225	1,445	84.78		

			建物ボ	ポリゴン単位	位の自動		精度	全ク	ッ ラス	
			LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
	目	LEVEL1	12,416	5,178	202	976	18,772	66.14		
	視	LEVEL2	1,125	3,809	354	537	5,825	65.39	19 650	65.24
	判	LEVEL3	208	556	1,200	538	2,502	47.96	18,030	05.54
	読	LEVEL4	70	102	48	1,225	1,445	84.78		

表 5.1.4-11 (CASE:5)T2=5,T3=30,T4=5(%)の場合

表 5.1.4-12 (CASE:6)T2=10,T3=5,T4=5(%)の場合

		建物ボ	ポリゴン単位	位の自動	스 키	精度	全ク	'ラス	
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
目	LEVEL1	12,978	4,315	503	976	18,772	69.13		
視	LEVEL2	1,209	3,488	591	537	5,825	59.88	10.016	66.62
判	LEVEL3	206	433	1,325	538	2,502	52.96	19,010	00.02
読	LEVEL4	77	83	60	1,225	1,445	84.78		

表 5.1.4-13 (CASE:7)T2=30,T3=5,T4=5(%)の場合

		判別	스 키	精度	全クラス				
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
目	LEVEL1	14,445	2,848	503	976	18,772	76.95		
視	LEVEL2	1,484	3,213	591	537	5,825	55.16	20.200	70.90
判	LEVEL3	236	403	1,325	538	2,502	52.96	20,208	/0.80
読	LEVEL4	86	74	60	1,225	1,445	84.78		

表 5.1.4-14 (CASE:8)T2=10,T3=10,T4=30(%)の場合

		建物ポリゴン単位の自動判				∧ ⇒I	精度	全ク	「ラス
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
目	LEVEL1	14,624	2,917	401	830	18,772	77.90		
視	LEVEL2	1,510	3,310	541	464	5,825	56.82	20.482	71 76
判	LEVEL3	251	430	1,338	483	2,502	53.48	20,482	/1./0
読	LEVEL4	90	85	60	1,210	1,445	83.74		

図 5.1.4-12 被害判別結果(セル単位)

図 5.1.4-13 被害判別結果(ポリゴン単位)

	<u> </u>	建物ボ	リゴン単位	立の自動		精度	全クラス		
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計	(%)	正解数	精度(%)
目	LEVEL1	768	251	75	163	1,257	61.10		
視	LEVEL2	63	375	27	58	523	71.70	2 221	60.06
判	LEVEL3	26	98	437	184	745	58.66	2,221	09.00
読	LEVEL4	9	24	17	641	691	92.76		

表 5.1.4-15 宮園地区周辺における建物単位の被害判別

5.1.5 被害自動判別手法の汎用化に向けた開発

前章では熊本地震本震後に益城町宮園地区周辺に おいて取得された航空写真1図枠を用いて深層学習 による被害判別モデルを構築し,86%を超える被害 判別性能を確認することができた.しかし、構築し たモデルは学習に使用した航空写真画像に最適化さ れているため,他の地震被害画像にそのまま適用す ると分類性能が低下することが予想される(内藤ほ か(2018c)). 従って, ここではまず, これまで示し た手順により益城町宮園地区の航空写真1図枠に対 して学習を実施後、このモデルに対して別の航空写 真を追加で学習を行い、パラメータ更新を行うこと により、未知データに対する識別性能を向上させた 汎用性の高い判別モデルを構築した.以下,①熊本 地震本震後の広域画像を用いた追加学習, ②東北地 方太平洋沖地震の画像を用いた追加学習の順に説明 する.

① 熊本地震本震後の広域画像を用いた追加学習

熊本地震本震後の2016年4月19日に株式会社 パスコが撮影した画像のうち、益城町の大部分、熊 本市東区と嘉島町の一部を含んだ図5.1.5-1に示す 範囲内における20図枠を用いた追加学習を行った. データ取得方法については、まず、航空写真全20 枚からマスク画像を元に建物ポリゴン毎に1枚ずつ パッチ画像を自動抽出した.次に、建物以外につい ては、パッチ内および周辺40pixelに建物が含まれ ない場合に自動抽出した画像を航空写真毎にサンプ ル数が均等になるように抽出した.これらのデータ から、各クラスのデータが均等になるように間引き あるいはデータ拡張を行い,表 5.1.5-1 に示すよう に各クラス 2,500 枚ずつの学習用パッチ画像を作成 した.これらの画像を用いて前章で構築した CNN による被害判別モデルを適用し,10 分割交差検証 法により追加学習および検証を行ったところ,表 5.1.5-2 に示すように建物部分の判別精度は約 85.3% と高い識別性能を確認することができた.

続いて、同じ航空写真 20 図枠を用いて、建物ポ リゴンに外接する矩形の中心点を含むように 20pixel 以内の範囲でランダムにずらした 80pixel 四方の パッチ画像を、ポリゴン毎に 2 つずつ自動取得した. 次に、目視によりパッチ画像単体では被害区分の識 別が困難なデータを除外した計 26,975 枚のパッチ 画像を用いて、1 図枠を検証用、残りの 19 図枠を 学習用として分割したデータを用いて追加学習を実 施し、交差検証法による精度評価を行った.ただし、 すでに学習済みの宮園地区の1 図枠は検証用データ から除外した.結果、表 5.1.5-3 に示すように、全 ての被害区分における判別精度は約 78.4% となり、 データ取得範囲を広げ、航空写真図枠単位で交差検 証を行った場合においても高い識別性能を確認する ことができた.

追加学習により構築した被害判別モデルを用い た被害判別結果について,図5.1.5-2 に使用した航 空写真の例を,図5.1.5-3 に目視判読に基づくマス ク画像を,図5.1.5-4 に 20pixel 四方のセル単位にお ける被害判別結果を,図5.1.5-5 にポリゴン単位の 被害判別を示す.これらの判別結果を比較すると, LEVEL4 被害の集中地域や,全体的な被災程度の特 徴がよく抽出できていることが分かる.

表 5.1.5-1 熊本地震における航空写真 20 図枠を用いた追加学習に使用した被害区分別学習データ数

	非建物	LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計
抽出パッチ画像数	16,094	15,346	5,075	2,213	1,222	39,950
使用パッチ画像数	2,500	2,500	2,500	2,500	2,500	12,500

図 5.1.5-1 追加学習に使用した航空写真の範囲

表 5.1.5-2	20 図枠を用いた学習パッチ毎の判別結果
-----------	----------------------

				自動判別			∆≇⊥	判別精度	全建物	クラス
		非建物	LEVEL1	LEVEL2	LEVEL3	LEVEL4	百百	(%)	正解数	精度(%)
目	非建物	2,405	64	7	1	23	2,500	96.2	-	-
視	LEVEL1	45	2,039	393	2	21	2,500	81.6		
判	LEVEL2	4	379	1,924	155	38	2,500	77.0	0 575	05 75
読	LEVEL3	0	19	226	2,221	34	2,500	88.8	0,333	05.55
	LEVEL4	14	22	54	59	2,351	2,500	94.0		

表 5.1.5-3 航空写真図枠毎の交差検証による判別結果

				自動判別			∆≇⊥	判別精度	全建物	クラス
		非建物	LEVEL1	LEVEL2	LEVEL3	LEVEL4	百.日、	(%)	正解数	精度(%)
目	LEVEL1	223	17,661	3,603	54	187	21,728	81.28		
視	LEVEL2	5	742	2,454	345	104	3,650	67.23	21 152	70 /1
判	LEVEL3	2	10	302	741	91	1,146	64.66	21,132	/8.41
読	LEVEL4	7	13	60	75	296	451	65.63		

図 5.1.5-2 追加学習に使用した航空写真の例

図 5.1.5-3 被害判読マスク画像

図 5.1.5-4 被害判別結果(セル単位)

② 東北地方太平洋沖地震の画像を用いた追加学習

これまで熊本地震本震後の航空写真を用いて構築 した被害判別モデルについて述べてきた.しかし, 同一の地震による被害画像のみを用いて作成した学 習データには偏りがあり,他の被災画像を用いた場 合に識別性能が大幅に低下する可能性がある.従っ て,本研究では東北地方太平洋沖地震直後に宮城県 仙台市内陸部において取得された航空写真を用いた 追加学習を行い,より汎用性の高い被害判別モデル の構築を行った.

使用した画像は 2011 年 3 月下旬に株式会社パス コによりデジタルエリアセンサ (UCX) により撮影さ れた解像度 20 cm/pixel の航空写真である.図 5.1.5-6 に示す範囲の航空写真を用いて表 5.1.2-1 の基準に 従って建物被害を4段階に区分し,GIS ソフトを用 いて国土地理院が公開する基盤地図情報(建築物)ポ リゴンの属性データとして入力した.

これらのデータの内,地震動による被害に限定す るため,国土地理院の10万分の1浸水範囲概況図 を参考に,浸水域が含まれる航空写真図枠について は学習の対象外とし,計12図枠から学習用データ を作成し,1図枠を検証用に使用した(図 5.1.5-6).

ここで、今回学習に使用する東北地方太平洋沖地 震後の航空写真と、熊本地震本震後に取得された航 空写真は同じ解像度であるが、日照等、撮影条件の 違いにより画像の明るさやカラーバランスが異なる ことが目視により明らかである.従って、これらの 要因が学習に与える影響を防止するため、本研究で はそれぞれの画像から作成した RGB 各チャンネル 輝度の累積和ヒストグラムを用いて、東北地方太平

図 5.1.5-5 被害判別結果(ポリゴン単位)

洋沖地震のヒストグラムを熊本地震に類似化させる ヒストグラム正規化を,東北地方太平洋沖地震の学 習用画像に対して行った(図 5.1.5-7).

次に,正規化した学習用航空写真 12 図枠および 被害区分毎に色分けしたマスク画像を用いて,機械 学習に使用する 80pixel 四方のパッチ画像を自動抽 出した.抽出方法は建物部分に関しては建物ポリゴ ン毎に1つずつ取得し,建物以外の部分は航空写真 全域を走査幅 160pixel でラスタスキャンし,パッチ 内および周辺 40pixel の範囲内に建物が含まれない 画像を抽出した.このような手順で取得したパッチ 画像のうち,多いデータに関しては間引きを,少な いデータについては拡張を行い,各クラス 2,500 枚 ずつの学習用パッチ画像を作成した(表 5.1.5-4).

続いて,深層学習を用いた判別モデルにより,熊本地震における被害集中域1図枠から作成した学習 データ(表 5.1.4-1),益城町周辺の20図枠から作成 した学習データ(表 5.1.5-1),東北地方太平洋沖地震 における仙台市の13図枠から作成した学習データ (表 5.1.5-4)の順に追加学習を行い,構築した判別モ デルを用いて,学習に使用していない東北地方太平 洋沖地震における航空写真1図枠を用いた建物ポリ ゴン単位の判別結果の精度検証を行った.結果,判 別精度は被害区分LEVEL1の場合において最も高 い値を示し,建物部分全体の判別精度は約70.8%で あった(表 5.1.5-5).

今回の検証により,被害レベル大の場合に判別精 度が低下する結果が得られたが,これは,追加学習 に使用した東北地方太平洋沖地震の被害画像ではこ れらの被害レベルの建物が少ないため,学習用およ び検証用データとして数量が十分でなかったことが 考えられる.従って、今後はより兵庫県南部地震等、 甚大な被害が出た地震直後に取得された航空写真を 用いた追加学習を実施する予定である.

5.1.6 まとめおよび今後の課題

災害発生直後の被害程度を即時的に把握可能な状 況把握技術の開発を目的として, 熊本地震本震によ

る建物被害を主な対象として、航空写真を用いた建 物被害目視判読を行った. また, 目視判読結果を正 解とみなし,画像解析および機械学習手法を用いた 被害自動判別手法を開発し、それぞれの手法におけ る被害判別精度を検証した.

画像解析を用いた被害抽出は,手法毎に高い精度 で抽出可能な被害程度が異なることがわかり、複数

図 5.1.5-7 ヒストグラム正規化

表 5.1.5-4 東北地方太平洋沖地震における追加学習に使用した被害区分別学習データ数

	非建物	LEVEL1	LEVEL2	LEVEL3	LEVEL4	合計
抽出パッチ画像数	16,875	30,105	2,934	1,007	20	50,941
使用パッチ画像数	2,500	2,500	2,500	2,500	2,500	12,500

			自動	判別		스릭	判別精度	全建物	クラス
		LEVEL1	LEVEL2	LEVEL3	LEVEL4	19 11	(%)	正解数	精度(%)
目	LEVEL1	892	196	30	11	1,129	79.01		
視	LEVEL2	102	109	52	6	269	40.52	1 000	70.70
判	LEVEL3	7	26	78	11	122	63.93	1,090	/0./9
読	LEVEL4	0	2	3	2	7	28.57		

表 5.1.5-5	東北地方太平洋沖地震検証用画像の判別結果

の手法を組み合わせて使用することにより比較的高 精度な被害判別が可能になることがわかった.

また,機械学習手法を用いた被害抽出においては, 深層学習を用いたモデルにおいて高い識別性能を確 認することができ、航空写真目視判読のみによって 識別が可能な4段階の被害区分を深層学習により実 現可能であることが明らかになった. また, 判読す る画像の明るさ等の正規化を行うことにより、異な る地震における被害画像を用いた被害識別が可能で あることが分かった. また、判別モデル構築にあた り、判別対象とする被害画像を用いた一部のデータ を学習用画像として追加したほうがより高い精度で 被害が区分可能であることがわかった. 今後も汎用 性の高いモデル構築のために,異なる被災画像を機 械学習用データとして追加していく予定である.ま た、大規模災害時の即時状況把握を目的とした、本 開発手法の災害対応への実装についても引き続き検 討を進めていきたい.

参考文献

- 青木久・松岡昌志・山崎文雄 (2001):空撮画像を 用いた地震による被害建物の抽出,写真測量と リモートセンシング, Vol.40, No.4.
- Apache MXNet: http://mxnet.incubator.apache.org/ (2018 年 11 月 13 日確認)
- Csuruka, G., Dance, C.R., Fan, L., Willamowski, J., and Bray, C. (2004) : Visual categorization with Bags of Keypoints, ECCV International workshop on statistical learning in computer vision.
- 本田禎人・望月貫一郎・下村博之・門馬直一(2016): 平成28年熊本地震での被災建物判読を目的とし たブルーシート被覆建物の自動抽出,日本地震 工学会・大会-2016 梗概集.
- 釜ヶ谷悠馬・松岡昌志 (2017):2016 年熊本地震後 の空中写真を用いた深層学習による建物被害分 類,東濃地震科学研究所報告「防災研究委員会 2017 年度報告書」No.41,2017.
- 国土地理院:基盤地図情報ダウンロードサービス, https://fgd.gsi.go.jp/download/menu.php (2018 年 11 月 13 日確認)
- 国土地理院:基盤地図情報サイト, http://www.gsi. go.jp/kiban/index.html(2018年11月13日確認)
- 国土地理院:国土画像情報,http://www.gsi.go.jp/

johofukyu/kani_ortho_1.html (2018年11月13日確認)

- 国土地理院:10万分の1浸水範囲概況図, http:// www.gsi.go.jp/kikaku/kikaku60003.html (2018 年 11 月13日確認)
- 日下彰宏,中村洋光,藤原広行,岡野創(2017): ベイズ更新により実被害情報を融合した震災後 の住宅被害棟数の推定,日本地震工学会論文集 第17巻第1号, pp.16-29.
- Lowe, D.G. (2004) : Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60(2), pp.91-110.
- 石井友,松岡昌志,牧紀男,堀江啓,田中聡(2018): 兵庫県南部地震後に撮影された航空写真と現地 写真を用いた深層学習による建物被災度判別の 試み,日本建築学会構造系論文集 第83巻 第751 号, pp.1391-1400.
- 松岡昌志・山崎文雄(2002):人工衛星 SAR 強度画 像を用いた被害地域検出手法の最近の地震への 適用とその妥当性の検討,日本建築学会構造系 論文集 第 558 号, pp.139-147.
- 三浦弘之・翠川三郎・Soh Hui Chen (2012):2010年 ハイチ地震における被害地域検出のための高分 解能衛星画像のテクスチャ解析,日本地震工学 会論文集,第12巻,第6号.
- 三冨創・松岡昌志・山崎文雄(2002):空撮画像を 用いた汎用的な建物被害抽出方法に関する考察, 土木学会論文集, No.710/I-60,pp.413-425.
- 内閣府中央防災会議(2013):南海トラフ巨大地震の被害想定について(第二次報告)~施設等の被害~【被害の様相】,平成25年(2013年)3月18日.
- 内藤昌平・門馬直一・中村洋光・藤原広行・下村博之・ 山田哲也(2018a):航空写真目視判読にもとづく 2016年熊本地震による建物被害調査, 土木学会 論文集 A1, Vol.74, No.4.
- 内藤昌平・門馬直一・山田哲也・下村博之・望月 貫一郎・本田禎人・中村洋光・藤原広行・庄司 学(2018b):熊本地震における航空写真を用いた 画像解析手法による建物被害抽出,土木学会第 38回地震工学研究発表会講演論文集.
- 内藤昌平・中村洋光・藤原広行・友澤弘充・森悠史・ 永田毅・山田哲也・下村博之・門馬直一・庄司 学(2018c):航空写真を用いた機械学習に基づく

地震動による建物被害自動判別手法の開発,第 15回日本地震工学シンポジウム.

- Naito, S., H. Tomozawa, Y. Mori, H. Nakamura, and H. Fujiwara (2018) : Damage Detection Method for Buildings with Machine-Learning Techniques Utilizing Images of Automobile Running Surveys Aftermath of the 2016 Kumamoto Earthquake, Journal of Disaster Research, Vol.13, No.5, pp.928-942.
- 小川直樹・山崎文雄(2000):航空写真を用いた兵 庫県南部地震における建物被害の目視判読,地 域安全学会論文集 Vol.2, pp.119-128.
- 消防庁(2018): 熊本県熊本地方を震源とする地震(第117報), (2018年7月17日確認)
- Simonyan, K. and Zisserman, A. (2014) : Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556.

5.2 ベイズ更新を用いた実被害情報融合手法の開発

5.2.1 住宅の被害棟数分布の推定誤差の更新方法

(1) 被害の推定誤差に関する既往研究

被害関数を用いた被害推定は計算量が少なく,発 災後,極めて短時間に広範囲の被害状況を推定でき る利点がある.ただし,被害関数が,基本的に過去 の地震被害調査等を利用して地震動強さと被害率を 統計的に関係づけたものであることから,実際に発 生した個別の地震被害に当てはめたときに,必ずし も十分な精度を保っているとは限らない.

一方,発災後には,地方公共団体等が報告する従 来からの被害報告に加え,近年では,定点カメラや 自動車等の積載カメラ,また航空写真の画像解析に よる被害棟数など,実際の被害情報(以下,実被害 情報)が得られることが期待される.こうした情報 は,時間的空間的に断片的であるものの正確性は高 い.そこで,上記の被害関数を用いた推定情報を, これらの実被害情報を反映して更新すれば,被害状 況把握の精度が向上する可能性がある.

実被害情報を利用した被害推定精度の向上を目的 とした既往研究として,能島ほか(2001)は,ガスや 上下水道の供給網のように空間的に広がりのあるイ ンフラストラクチャを対象に,ベイズ更新を利用し て,限られた範囲の調査結果を利用して全体の被害 総数の推定値を更新している.また,同様の考え方 で,地震動が既知の場合に建物被害総数を把握する 手順も提案されている(能島ほか,2003).これらの 研究は,同程度の地震動レベルを受けた地域の均等 な耐震性をもつシステムを対象に,その一部の調査 結果から全体の被害率をベイズ更新することを想定 しているが,ある程度広い地域の住宅被害分布の推 定誤差を更新するには,住宅の耐震性や地震動強さ が一様とは見なせない状況にも対応しなければなら ない.

物理的な特性の違いを考慮した研究としては, Gardoni *et al.* (2002)が,鉄筋コンクリート柱の耐力 を対象として,既往の耐力評価式に確率量である修 正項を加え,その修正項の確率分布を記述するため の平均や標準偏差などのパラメタを,実験データを 使ってベイズ更新する枠組みを提案した.この手法 では,修正項を,鉄筋量など被害の発生を記述する ための物理量を用いた多項式で表現しているため, 推定誤差を物理的な性質に基づいて層別して扱いや すい.ただし,同定すべきパラメタが多くなりがち で,災害対応に利用することを考えると,情報が少 ない発災直後にも迅速に安定した推定が困難になら ないように注意が必要である.日下ほか(2015)は, この考え方を発展させ,鋼構造建物の梁端を対象と した震災後の安全性検査を想定して,梁端に生じた 荷重効果と耐力の差である安全余裕の確率分布を, 階などによりグループ化して更新することで,限ら れた箇所の検査結果から建物内に破断が有無する可 能性を判断する手法を提案している.

(2)本開発におけるベイズ更新の枠組の定式化

ここでは,被災地の被害の全容を把握する目的で 被害関数を更新するに当たり,日下ほか(2015)の手 法を,建物を被災域全体に,各梁端を地域別の住宅 群に見立てて応用し,一部地域の被害調査結果を利 用して被災地全体の被害推定を更新する方法を採用 した.

その際,被害関数と住宅棟数分布が予め整理され ていることを前提として,地域メッシュ単位で発災 後に得られる地震動強さ*S*の推定値*s*を用いて推定 される被害率の推定誤差を,逐次得られる実被害情 報を反映して更新するものとした.なお,本節では, とくに断りがなく大文字で表現された量は確率量で あり,その実現値を同じ文字の小文字で表す.その ほか,太字はベクトルを,通常体はスカラを表し, 実被害情報を得る前の推定値には[^]を,実被害情報 を得て更新された推定値には[~]を付して表現する.

さて,採用した更新手法では,被害関数のパラメ タの誤差を確率変数でモデル化し,確率分布の平均 の確率分布をベイズ更新する.その手順概要を図 5.2.1-1 に示す.

また,推定誤差の更新においては,推定対象の地 理メッシュ(以下,特に断りがない場合は単にメッ シュと表記)の行政区分(空間的な近接性の代理変 数)や微地形区分を利用して作成したグループ別に, その特徴を反映できるように,以下の仮定をおいて, 問題を定式化した.

- 被災域は,n個のメッシュに分割され,各メッシュ はng個(ng < n)あるいずれかの「地区」に属して いる.実被害情報である全壊棟数と半壊棟数は, 地区単位で集計されて報告される.
- 2. 各地区gは、より大きな単位である「地域」に属

している. 被災域全体は n_r 個 $(l \le n_r \le n_g)$ の地域 で構成される.

- 3. 各メッシュには地盤増幅特性の違いを示す*p*種 類の地盤種別のいずれかが割り付けられている.
- 4. 住宅は耐震性の違いにより q 種類のカテゴリに 分けられて,被害関数が与えられており,その 平均と標準偏差は,それぞれ全壊について $\hat{r}_{h,j}$, $\hat{\sigma}_{h,j}$, 全半壊について $\hat{r}_{m,j}$, $\hat{\sigma}_{m,j}$ である (j = 1, ..., q). また,メッシュ i(i = 1, ..., n) に存在するカテゴリ jの住宅棟数 n_{bii} は既知である.
- 5. 地震発生後、メッシュiの推定地震動強さŝ_iが得られ、ŝ_iと上記1~4に述べた情報をもとに住宅の被害棟数が推定される.この推定を更新後の推定と区別して「即時推定」と呼ぶ.
- 6. 即時推定ののち,逐次,実被害情報として各地 区の全壊棟数と全半壊棟数が得られる.

図 5.2.1-1 実被害情報と推定情報の融合アルゴリズムの概要

この枠組みは,被害関数を用いた被害推定一般に 当てはめられるが,具体的な更新手順は,利用する 被害関数に依存するので,以下では,図5.2.1-2内 閣府(2012)による被害関数の利用を想定して記載 する.この被害関数は,住宅の全壊と全半壊を対象 として設定されていて,木造住宅に対して建築年に よって6種類,非木造住宅に対して同じく3種類の カテゴリに分類されている.また,地震動強さの指 標は計測震度であり,正規分布でモデル化されてい る.

図 5.2.1-2 内閣府(2012)の被害関数

さて, 揺れの強さの指標で表現された住宅の耐震 性を R で表すと, R < S となる確率が被害率になる ので, 地震動強さ S を受けた住宅に対して M = R - S となる確率変数 M を考えると, 被害関数は M が負 になる確率で表現できる.

そこで、Mを式 (5.2.1-1)のように、R とSの推定 値の差 \hat{n} とその推定誤差 ε の和で表現し、さらに推 定誤差 ε を正規確率変数 X_k ($k = 0, ... n_f$)の和でモデ ル化する.

$$M = \hat{m} + \varepsilon = \hat{m} + \sum_{k=0}^{n_f} X_k \tag{5.2.1-1}$$

ここで,

 $\widehat{m} = \widehat{r} - \widehat{s}$

このモデルを採用することは、地震動強さ*S* を説明変数とし、平均、標準偏差がそれぞれ、 \hat{r} +E[$\sum_{k=0}^{n} X_{k}$]、 $\sqrt{\operatorname{Var}[\sum_{k=0}^{n} X_{k}]}$ の被害関数で被害率を 推定することと同値である.ここで、E[•]、Var[•] はそれぞれ[]内の確率変数の期待値と分散を表す.

式 (5.2.1-1) で ε を X_k の和で表現した理由は推定 誤差を要因別のそれの和でモデル化するためであ る.ここで、k=0、すなわち X_0 は推定手法全体に 共通の推定誤差とする.X₀以外の誤差要因の例とし ては、「建築時期」、「地盤条件」、「地域」などが考え られ、例えば『要因「建築時期」については「新耐震以 前/以後」の2グループを設定』といったように、そ れぞれ n_k ($n_k \ge 1$) 個のグループに分けてモデル化す る. どのような要因で X_kを設定し, それぞれどの ようにグループ分けするか(以下、この設定を誤差 モデルと呼ぶ)によって、提案手法の効率や精度が きまる.より多くの要因を設定し、また多くのグルー プに分けたモデルほど,十分な量の実被害情報が集 まったときの推定誤差を小さくできるが、その一方 で実被害情報が少ないときには更新結果が不安定に なりやすい. そこで、早期の被害把握という目的に 適うモデルを構築するには、実際に利用する実被害 情報の入手性と推定誤差の統計的性質を合わせて検 討しなければならない.

本開発では、過去の地震被害データを用いて、被 害関数による被害推定の誤差を分析した結果を利用 して、多くの被害が概ねひとつの県程度の範囲で生 じた地震については、「地盤条件」と「空間的な近接 さ」を疑似的に表現できる「微地形区分」を要因とし て採用し、それよりも広範囲に被害が推定される場 合には、加えて「県」を要因に採用した.

また、微地形区分については、すべてを分別する と数が多すぎるので、いくつかをまとめてグループ 化する必要がある.このグループの数の検討につい ては、**5.2.3**で後述する.

さて,被害関数を式(5.2.1-1)で置き換えたことで, で示すベイズ更新の対象は,X_kの確率分布を記述す るためのパラメタとなる.正規分布のパラメタは, 期待値,標準偏差,相関係数であり,これらすべて のパラメタを更新対象とした既往研究(Straub & Der Kiureghian, 2008)もある.しかし,評価すべきパラ メタを増やすほど,安定した更新を行うために必要 な実被害情報が多くなる.そこで,災害対応を支援 するという目的に照らし,発災から間もない災害時 の限られた情報でも安定して推定ができるように, 更新対象とするパラメタを減らして期待値だけを更 新する枠組みを採用した.ここで,確率分布を更新 するパラメタを要素とするベクトルをのと表すと, のの中身は式(5.2.1-2)になる.

$$\boldsymbol{\Theta} = \left(M_0, M_{1,1}, \dots, M_{1,n_1}, \dots, M_{n,1}, \dots, M_{n,n_n} \right) \quad (5.2.1-2)$$

ここで,

*M*₀: *X*₀の期待値

M_{k,l}: *k*番目の要因がグループ*l*(*l* = 1, ..., *n_k*)に属 するときの*X_k*の期待値

また,ベイズ更新では,更新後の推定値(事後推定) として被害棟数の確率分布が得られるが,本開発 では更新時間の短縮を優先して,後述する式(5.2.1-9),式(5.2.1-10)で近似した期待値を評価することに した.この部分を改良すれば,推定値の期待値だけ でなく標準偏差など,ばらつきを表す指標も計算で きる.ただし,ばらつき評価する場合,安定した結 果を得るのに必要な計算量が増えること,また式 (5.2.1-2)に示すように更新対象のパラメタを制限し た影響が懸念されるため,推定結果の精度も含めて 迅速に評価するにはさらなる検討が必要である.

(3)ベイズ更新による推定誤差の更新方法

ベイズ更新では、実被害情報 dを得たとき、情報を得る前の Θ の事前分布 $p(\theta)$ を、 $\Theta = \theta$ であるときに情報 d が得られる尤度 $L(\theta)$ を乗じて事後分布 $p(\theta|d)$ に更新する.すなわち、

$$p(\boldsymbol{\theta}|\boldsymbol{d}) = c \cdot L(\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})$$
(5.2.1-3)

ここで,

c: *p*(*θ*|*d*) を全定義域で積分したときに1になるよう に正規化するための係数

たとえば、 n_{g_obs} 箇所の地区で、それぞれ全壊 d_{h,g_obs} a_{bbs} 棟と全半壊 d_{m,g_obs} 棟という情報を得たときの尤 度 $L(\theta)$ は次のように評価する.ここで、添字h,mは、 それぞれ全壊と全半壊に関する情報であることを、 同じく g_obs ($g_obs = 1, ..., n_{g_obs}$)は、その情報が地 区 g_obs に関する情報であることを表す。

まず、 θ が与えられれば、メッシュ*i*におけるカ テゴリ*j*の住宅の全壊率 $p_{h,ij}$ 、全半壊率 $p_{m,ij}$ は、式 (5.2.1-1)のモデルにより、標準正規確率分布関数Ф (・)と対象としたメッシュや住宅区分の属性によっ て決まる各要因のグループに応じた μ_k を用いて、 それぞれ式 (5.2.1-4)、式 (5.2.1-5)で計算できる.

$$p_{h,ij} = \Phi\left(-\frac{\hat{r}_{h,j} - \hat{s}_i + \sum_{k=0}^{n_f} \mu_k}{\hat{\sigma}_{h,j}}\right)$$
(5.2.1-4)

$$p_{m,ij} = \Phi\left(-\frac{\hat{r}_{m,j} - \hat{s}_i + \sum_{k=0}^{n_f} \mu_k}{\hat{\sigma}_{m,j}}\right)$$
(5.2.1-5)

 θ の尤度 $L(\theta)$, すなわち θ が与えられた条件のも とで d_{h,g_obs} が得られる確率を評価するためには,地 区 g_obs に属するすべてのメッシュのすべての住宅 属性の被害棟数を足すと d_{h,g_obs} となる被害棟数の組 合せを考え, θ が与えられた条件のもとで各組合せ で各被害棟数が生ずる確率を評価してその総和をと ればよい.しかし,一般には,あり得る被害棟数の 組合せの数は膨大であり,厳密に計算するには大き な計算負荷がかかる.一方,本開発の目的は災害対 応支援であることから,平均から離れた確率分布の 裾野で決まる低い被害率の精度をいくらか犠牲にし ても 1% 程度以上の比較的高い被害率を早く評価で きること方が重視されると考えられる.そこで,尤 度 $L(\theta)$ は,地区単位の平均被害率を利用した多項分 布により近似して評価した.

すなわち,各メッシュ,各住宅属性別に式(5.2.1-4),式(5.2.1-5)で被害率*p_{h,ij}とp_{m,ij}*を計算したあ と,各地区単位で住宅棟数の重みつきの平均全壊率 *p̄_{h,g_obs}*と平均全半壊率*p̄_{m,g_obs}*をそれぞれ式(5.2.1-6),式(5.2.1-7)で求める.

$$\bar{p}_{h,g_obs} = \frac{\sum_i \sum_j n_{b,ij} p_{h,ij}}{\sum_i \sum_j n_{b,ij}}$$
(5.2.1-6)

$$\bar{p}_{m,g_obs} = \frac{\sum_{i} \sum_{j} n_{b,ij} p_{m,ij}}{\sum_{i} \sum_{j} n_{b,ij}}$$
(5.2.1-7)
 $\zeta \subset \mathcal{C},$

n_{b,ij}:メッシュ*i*におけるカテゴリ*j*の住宅棟数

また,和記号の範囲は*i*については地区 g_obs に 属する全メッシュ,*j*についてはすべての住宅カテ ゴリである.

平均被害率 \bar{p}_{h,g_obs} 、 \bar{p}_{m,g_obs} と全壊棟数 d_{h,g_obs} 、全 半壊棟数 d_{m,g_obs} を得たとき、尤度 $L(\theta)$ は、地区 g_obs の総建物数 n_{b,g_obs} に対する多項分布を考えて 式 (5.2.1-8) で評価する.

$$L(\theta) \propto \prod_{g_{obs}=1}^{n_{g_{obs}}} \bar{p}_{h,g_{obs}}^{d_{h,g_{obs}}} \cdot (\bar{p}_{m,g_{obs}} - \bar{p}_{h,g_{obs}})^{d_{m,g_{obs}} - d_{h,g_{obs}}} \cdot (1 - \bar{p}_{m,g_{obs}})^{n_{b,g_{obs}} - d_{m,g_{obs}}} (5.2.1-8)$$

更新後の各メッシュの全壊推定棟数*d*_{h,i}, 全半壊推 定棟数*d*_{m,i}は, それぞれ式 (5.2.1-9) と式 (5.2.1-10) で 推定する.

$$\begin{split} \tilde{d}_{h,i} &= \sum_{j=1}^{q} n_{b,ij} \cdot \\ \int p_{h,ij} \left(\hat{r}_{h,j}, \hat{s}_{i}, \boldsymbol{\theta} \right) \, p(\boldsymbol{\theta} | \boldsymbol{d}_{\boldsymbol{h},\boldsymbol{g}_{-}\boldsymbol{o}\boldsymbol{b}\boldsymbol{s}}, \boldsymbol{d}_{\boldsymbol{m},\boldsymbol{g}_{-}\boldsymbol{o}\boldsymbol{b}\boldsymbol{s}}) \mathrm{d}\boldsymbol{\theta} \quad (5.2.1-9) \\ \tilde{d}_{m,i} &= \sum_{j=1}^{q} n_{b,ij} \cdot \\ \int p_{m,ij} \left(\hat{r}_{m,j}, \hat{s}_{i}, \boldsymbol{\theta} \right) \, p(\boldsymbol{\theta} | \boldsymbol{d}_{\boldsymbol{h},\boldsymbol{g}_{-}\boldsymbol{o}\boldsymbol{b}\boldsymbol{s}}, \boldsymbol{d}_{m,\boldsymbol{g}_{-}\boldsymbol{o}\boldsymbol{b}\boldsymbol{s}}) \mathrm{d}\boldsymbol{\theta} \quad (5.2.1-10) \end{split}$$

式(5.2.1-9),式(5.2.1-10)に含まれる $p_{h,ij}(\hat{r}_{h,j},\hat{s}_{i},\theta)$, $p_{m,ij}(\hat{r}_{m,j},\hat{s}_{i},\theta)$ は、それぞれ式(5.2.1-4),式(5.2.1-5)で評価する $p_{h,ij}$, $p_{m,ij}$ に θ が含まれることを明示して表記したものである。また、式(5.2.1-9),式(5.2.1-10)の積分範囲は Θ の定義域全体である。ただし、実際の計算は、Markov Chain Monte Carlo 法の代表的な手法である Metropolis-Hastings アルゴリズム(Hastings, 1970)により式(5.2.1-3)の確率分布に従い直接発生させた Θ のサンプルを利用して計算する。

5.2.2 事例計算

(1) 2011 年東北地方太平洋沖地震を対象とした事例(a) 概要

2011 年 3 月 11 日に発生した東北地方太平洋沖地 震(M9.0)の事例データを利用して事例計算を行っ た.津波の影響を避けるため,対象は被害の大きな 東北地方の3県(岩手,宮城,福島)の海岸線を持た ない市町村の住宅被害とした.

震度の推定値分布は、地震動分布推定シミュレー タ(RASMO)(防災科学技術研究所, 2007)を用いて, K-NET, KiK-net および気象庁・自治体の観測点の 観測データを、各観測点における AVS30 を利用し て工学的基盤での値に換算し、距離減衰式のトレン ドを考慮して空間補間してから、再び地表の値に換 算して求めた.図5.2.2-1に推定した震度分布を示す. さらに、推定震度を入力として、内閣府(2012)の被 害関数により求めた 250 m 地理メッシュ毎の住宅カ テゴリ別の被害率に、2008年住宅・土地統計調査に よる市町村別のカテゴリ別住宅棟数を2005年国勢 調査地域メッシュ統計による世帯数を利用してメッ シュに分配して設定した住宅棟数を乗じて推定被害 棟数を求めた. これらの値を, 総務省消防庁が報じ た「被害報(第151報)」(総務省消防庁, 2015)におい て1棟以上の全壊が報告された市町村について、市 町村別に集計した.

図 5.2.2-1 2011 年東北地方太平洋沖地震を対象とした事例 例題で用いた推定震度分布

推定値(即時推定)を実際の被害棟数と比較して 表5.2.2-1 に示す.表5.2.2-1 に示す市町村の順序は, 総務省消防庁が,逐次報告した第1報から第151報 までの被害報を取集し,全壊棟数が表5.2.2-1 に示 す全壊棟数の90% ~ 110% が報告された時点の順に 並べたものである.同表載右列には,左記の値が最 初に報告されるまでの時間(日数)を記載した.報告 時点の判断に100%を超える値を入れた理由は,被 害報を分析した際,最初に大き目の概算値が報告さ れ,後の報で修正される事例が散見されたためであ る.

現実の災害対応に資することを考えると,表 5.2.2-1に示す情報は、同表最右列の値が示すよう入 手までに時間がかかり過ぎている.さらに、被害棟 数がゼロであるという情報が反映できないという問 題もあり、現状の被害報をそのまま融合情報として 利用することは考えにくい.しかし、広い範囲で得 られている実際の推定誤差を反映させたときの推定 情報が更新される様子を知り、今後、収集手段や融 合すべき情報を具体的に検討する際の基礎資料とす る目的で、ここでは端緒の仮想的な例題として、表 5.2.2-1に示す順に各市町村の全壊棟数と全半壊棟数 を実被害情報として得られたとして、逐次、被害推 定を更新する試算を行った.

(b) 誤差モデル

式 (5.2.1-1) における推定誤差のグループ分け要因 *X_k*は,被害レベル (全壊/全半壊),微地形区分,地 域(県)の3種類を採用した.

被害関数が建築年代別に設定されていることが示 すように,住宅の耐震性と建築年代には強い関係が ある.そこで,検討対象範囲とした90市町村につ いて,内閣府(2012)の被害関数の区分にしたがって 木造では10年ごと,非木造では1971年と1981年 の区切りで建築年代別棟数を市町村単位で集計し, 各区分の住宅棟数の総住宅棟数に示す割合を求め, 平均とその標準偏差を求めたところ,図5.2.2-2に 示す結果となった.同図から,住宅の建築年代別割 合は,標準偏差よりも建築年代間の平均の差が大き く,市町村単位でみれば,違いが大きくないことが わかった.もともと差が小さいパラメタを「要因」に 用いて,被害情報の推定誤差の違いを説明すること は難しいので,建築年代や構造種別は,建築年代や 構造種別は本例題の誤差モデルには採用しないこと とした.

市町村	全壊	東数	全半壊	棟数	全住宅	報告まで の日数
	即時推定	被害報	即時推定	被害報	侬釵	(日)
1.角田市(宮城)	166	13	1,077	171	10,342	22
2.西郷村(福島)	57	43	377	348	4,944	24
3.桑折町(福島)	205	55	782	360	4,315	39
4.川俣町(福島)	35	28	342	333	4,865	48
5.中島村(福島)	21	3	134	308	963	69
6.白石市(宮城)	129	40	1,047	345	12,630	76
7.丸森町(宮城)	200	1	894	306	4,817	76
8.滝沢村(岩手)	54	1	533	306	14,951	83
9.美里町(宮城)	679	129	1,973	434	6,334	83
10.泉崎村(福島)	29	46	208	351	1,858	83
11.鏡石町(福島)	338	172	1,112	477	3,861	90
12.矢吹町(福島)	79	294	562	599	4,895	97
13.大和町(宮城)	33	42	310	347	6,654	104
14.加美町(宮城)	35	8	350	313	7,703	104
15.伊達市(福島)	116	25	996	330	19,018	111
16.白河市(福島)	174	240	1,278	545	18,868	139
17.登米市(宮城)	1,272	201	5,046	506	23,677	153
18.栗原市(宮城)	4,348	58	9,213	363	24,117	153
19.北上市(岩手)	108	30	1,111	335	27,826	167
20.富谷町(宮城)	43	16	380	321	10,473	167
21.涌谷町(宮城)	443	144	1,509	449	5,462	167
22.一関市(岩手)	613	57	4,036	362	41,721	182
23.大郷町(宮城)	38	50	220	355	2,497	182
24.二本松市(福島)	109	11	937	316	16,719	199
25.大崎市(宮城)	3,289	596	10,027	901	42,548	214
26.蔵王町(宮城)	113	16	587	321	4,059	275
27.福島市(福島)	47	204	927	509	86,412	306
28.郡山市(福島)	655	2,454	5,317	2,759	90,421	306
29.須賀川市(福島)	740	1,249	3,233	1,554	20,690	549
30.田村市(福島)	326	19	1,806	324	12,305	549
31.国見町(福島)	406	191	1,039	496	2,878	549
32.天栄村(福島)	56	72	233	377	1,398	549
33.奥州市(岩手)	49	51	838	356	40,151	730
34.川内村(福島)	29	9	149	314	901	1,450

図 5.2.2-2 岩手県,宮城県,福島県の非沿岸部市町村で の構造別建築年代別の建物棟数分布の平均と 標準偏差

図 5.2.2-3 岩手県, 宮城県, 福島県の微地形区分分布

微地形区分を採用した理由は,次の2点である. すなわち,①特定の振動数帯域の卓越が大きな被害 に関係するという知見(境,2013)に対して,被害関 数の説明変数である計測震度は振動数特性を明示的 に含まないので,地盤の固有振動数が近い地域では 被害率の推定誤差に相関が生ずるのではないかと考 えたこと,②県内程度の局所的な推定誤差の空間的 な連続性は,地表の地形の連続性で表現できると考 えたことである.また,日本全国の250 mメッシュ についてデータが整備されていることも利点であ る.図5.2.2-3 に対象地域の微地形区分の分布を示す.

微地形区分によるグループ化は,各区分を平均S 波速度の順(松岡ほか,2005)に並べたあと,区分 したグループの事後分布が少数の極端なデータに左 右されないように①各グループに属する住宅数が同 程度になること,②比較的多くの住宅が集中する微 地形区分が分別できることを条件として,グループ 数を変えた複数案を作成した.これらのうち,③設 定した各グループに対して少なくとも1つ以上の実 被害情報が早期に得られる範囲で出来るだけ多いグ ループ数として,試行錯誤的に5グループを選択し た.

図 5.2.2-4 に,推定震度 5 強以上のメッシュを抽 出し,微地形区分別の住宅棟数を求めて,上記の順 に並べ替えて住宅棟数の累積割合と設定したグルー プを示す.

図 5.2.2-4 微地形区分別の住宅棟数累積割合と 微地形区分により設定したグループ

さらに推定誤差の地域特性を表すための県別のグ ループ分けを導入した.ただし,実被害情報が少な い段階では,被害データが1つもないグループが生 ずるのを避けるため,3つの県の実被害情報が揃う 8番目(滝沢村)の被害情報が得られるまでは,県別 のグループを設定したモデルと設定しないモデルを 併用した.つまり,3県のデータがそろっていない, 丸森町までの情報が融合される第7ステップまで は,式(5.2.2-1)によるモデルと式(5.2.2-2)によるモ デルを並列させ,宮城県は最初から式(5.2.2-2)のモ デル,福島県は第1ステップ,岩手県は第7ステッ プまでは式(5.2.2-1),その後は式(5.2.2-2)による推 定値を採用した.

- $M = \hat{m} + X_0 + X_b + X_g \tag{5.2.2-1}$
- $M = \hat{m} + X_0 + X_b + X_g + X_r \tag{5.2.2-2}$

ここで,

X_b: 耐震性別の誤差

X_o:微地形区分グループ別の誤差

X_r:県別の誤差

また,事前分布 *p*(θ) は,すべての要素について平 均 0,標準偏差 0.1,相関係数 0 の正規分布とした. 各ステップの MCMC 法の計算では 15,000 サンプル を生成し,5,000 サンプルを Burn-in 期間として廃棄 した.

(c) 計算結果と考察

計算結果の一例として,表 5.2.2-1 の順で実被害 情報を融合したときに,各市町村における被害棟数 の推定誤差の総和の推移を図 5.2.2-5 に示す.同図 上は全壊のもの,下が全半壊のものである.また, 同図中に破線で示す「置き換え」とは,市町村の推定 被害棟数をそれまでに得られた実被害情報に置き換 えた場合を表し,同じく実線で示す「融合」とは,「置 き換え」に加えて,提案手法により実被害情報が得 られていない市町村の推定被害棟数を更新した場合 を表す.

開発した手法の効果は「融合」(実線)と「置き換え」 (破線)の差で表現される.その大きさは最初の情報 が得られたときが最も大きく,その後,縮小し第25 ステップ付近ではほとんど差がなくなる.実被害情 報が少ない段階では推定との差が大きく実被害情報 を得る価値が高いこと,ある程度,実被害情報が蓄 積するとモデルが表現できる被害分布の精度の上限 に近づくため,情報を追加しても精度が向上しない こと,さらには実被害情報に置き換えられた範囲が 増えて推定範囲が減ることも関係している.

即時推定で100棟以上の全壊と評価された市町村 について,その推定誤差棟数の推移を図 5.2.2-6 に 赤色(岩手県),水色(宮城県),橙色(福島県)と県別 にグラフの色を変えて図示した.

また,図 5.2.2-7 には,推定誤差棟数の分布の一例として,即時推定と9つの分布を比較した.図 5.2.2-7 に示す丸の大きさが推定誤差市町村の実被害情報を融合した時点での推定誤差の棟数の絶対値を表し,丸の色が桃色の場合は過大評価,水色は過小評価である.また,数字は表 5.2.2-1 に示す情報が融合される順序を表す.

図 5.5.2-6, 図 5.5.2-7 には、本手法による誤差解 消が一様でないことが示されている. 岩手県から宮 城県の推定誤差は、栗原市がやや難しいのもの,他 の市町村の実被害情報を融合することで概ね解消さ れているが、福島県郡山市(図 5.5.2-6 中の 28)の推 定誤差棟数は 27 番目の福島市の情報が得られるま でほとんど減少しない. この条件では、即時推定で は全体に過大評価する傾向にあるなかで、福島県須 賀川市(同 29)もあわせて、この地域(福島県中通り) の被害棟数が大きく過小評価されており、かつ同地 域の実被害情報が得られるのが遅いためである.

この手法は, 誤差の相関を利用して被害推定の精 度を高める手法であることから, 対象となる地域と 共通の誤差特性をもつ実被害情報が得られることが 誤差を解消するための必須条件である. ここで示し

図 5.2.2-5 市町村別被害棟数の総和の推移における 開発手法と単純置き換えの比較

図 5.2.2-6 情報融合による市町村別の全壊 / 全半壊棟数 の推定誤差の推移

図中の数字は表 5.2.1-1 に記載した実際の被害棟数を融合する 順番を示す

図 5.2.2-7 即時推定と9市町村の実被害情報を融合 した後との市町村別の全壊棟数推定誤差 の比較 た福島県中通りのように,ある地域が全体と異なる 特徴的な誤差傾向を持ち,その地域の情報が全く得 られない場合,原理的に有益な推定は得られない. つまり,構築した手法を活用するにあたっては,誤 差の相関の高いモデルを構築することに加えて,断 片的なものでも広い範囲の実被害情報を早期に得ら れる体制を整えることが重要である.

(2) 2007 年新潟県中越沖地震を対象とした事例

(a) 概要

2007年新潟県中越沖地震(以下,中越沖地震)では, 被災地域の各市町村の全壊棟数,半壊棟数に加え, 柏崎市については町丁目字(市内に263)別の全壊棟 数,半壊棟数(大規模半壊棟数と半壊棟数を合わせ たもの)のデータが作成されている.そこで,より 詳細な地域の実被害情報を融合する場合の課題とそ の対策を検討するための基礎データを得る目的で, 事例計算を実施した.

(b) 誤差モデル

対象となる被災域は新潟県内であることから,式 (5.2.1-1)における推定誤差のグループ分け要因には, 地域(県)を用いず,被害レベル(全壊/全半壊),微 地形区分の2種類とした.微地形区分を利用したグ ループ分けの数は,8区分にしたケースを示す.グ ループ設定方法は,2011年東北地方太平洋沖地震の 例題と同様の方法で作成した図5.2.2-8に示す推定 震度5以上のメッシュの住宅棟数の累積分布率を利 用して図5.2.2-9に示すように設定した.図5.2.2-11は同 は対象地域の微地形区分の分布図,図5.2.2-11は同 じく即時推定に利用した計測震度分布である.

図 5.2.2-8 推定震度 5 強以上のメッシュに存在する微地形 区分別の住宅棟数の累積分布率(中越沖地震)

図 5.2.2-9 微地形区分により設定した更新グループ

図 5.2.2-10 中越沖地震被災域の微地形区分分布図

図 5.2.2-11 中越沖地震の即時推定震度分布

(c) 実被害情報

被災地域の各市町村の全壊棟数,半壊棟数に加え, 柏崎市については町丁目字別の全壊棟数,半壊棟数 (大規模半壊棟数と半壊棟数を合わせたもの)のデー タを作成して被害情報を整理した.町丁目字は平成 22 年国勢調査の小地域を利用して設定した.融合順 については,市町村より小さな単位の被害情報は最 終的な数量しか得られていないため,乱数を用いて 設定した.設定した実被害情報の順序は煩雑になる ので,別の資料(小堀鐸二研究所, 2016)に譲る. また,柏崎市の市中心部では,被害推定で用いる 地域メッシュである 250 m メッシュよりも面積が小 さな町丁目字が多数存在している.逆に,報告され た実際の全壊棟数や被害棟数がメッシュデータから 算出した総住宅数を上回るものもみられた.こうし た場合,被害推定でメッシュデータに割り当てる総 住宅棟数を,全壊棟数と半壊棟数の和に一致させた.

上記のとおり詳細な地域の実被害情報の利用と 250 m メッシュを前提に整備した被害推定の整合を 図るほか,結果の考察のため,柏崎市の小学校区(柏 崎市,2016)を参考にして,図 5.2.2-12 に示す町丁 目字をまとめた 20 の被害推定集計区域を設定した. 同一町丁目字の飛び地等の処理をしていないので, 厳密には小学校区とは一致しないが,以下ではこの 区域を小学校区と呼ぶことにする.また,図 5.2.2-13 は,柏崎市の町丁目字境界と微地形区分を重ねて図 示した.

図 5.2.2-12 柏崎市の地域別の推定被害集計のために 設定した区域(小学校区)

図 5.2.2-13 柏崎市の町丁目字と微地形区分

(d) 計算結果と考察

先に定めた町丁目字および市町村の順で全壊および全半壊棟数の実被害情報を順次追加しながら推定 被害棟数を更新した.

図 5.2.2-14 に、柏崎市全体の全壊棟数、柏崎市以 外で 10 棟以上の全壊が生じた市町村(以下,簡単に 「全壊 10 棟以上」)の全壊棟数,全壊 10 棟以上の市 町村の全半壊棟数の推定誤差棟数の推移を示す.同 図の縦軸は、推定誤差棟数であるが、即時推定にお ける推定誤差棟数を基準にスケールを定めているの で、一部のステップでグラフが描画の範囲外にある. また、横軸は実被害情報の利用件数である.図中の 凡例の市町村名前に記載された数字は、その市町村 の実被害情報が利用された順番を示す.柏崎市は、 町丁目字単位で実被害情報を利用したため、番号は 付されておらず、刈羽村の実被害情報は 158 番目に 利用されたことなどが示されている.

同図から、柏崎市の全壊棟数は10程度の町丁目

図 5.2.2-14 実被害情報の利用件数による被害棟数の 推定誤差の推移

字の実被害情報を用いることで推定誤差がほとんど みられなくなった.また,それ以外の市町村の全壊 棟数,全半壊棟数では,最初の数ステップで推定誤 差棟数が上昇し,その後,実被害情報を融合するに 従い推定誤差棟数は低下した.これは,初期に被害 データがないグループの推定被害棟数が不安定に なったことが原因である.このケースでは,最初の 数ステップでは,柏崎市の中心や河川沿岸地域の実 被害情報を利用したため,山地や丘陵などの被害情 報が得られず,そのような地盤条件の地区が含まれ る市町村の被害推定で推定誤差が増大した.この事 例計算では,全壊の場合に20程度,全半壊で30程 度の実被害情報を利用したところで,推定誤差棟数 が不安定な挙動は終息した.

さて,新潟県中越地震では,柏崎市や刈羽村を中 心に液状化による被害が生じた.被害報告(国土交 通省,2008)によれば,柏崎西港町(31),柏崎市橋 場町(71),柏崎市東港町(109),柏崎市宮川(110), 柏崎市山本(117),刈羽村(158)などで液状化が確認 されている.ここで,()内の数字は実被害情報を 利用した順である.図5.2.2-14に,それらの実被害 情報を利用しても,被害棟数誤差に顕著な変化は見 られず,市町村単位の被害を推定する上では適切に 情報が融合できたといえる.

次に,柏崎市内の小学校区の全壊棟数推定誤差の 推移を図 5.2.2-15 に図示した.同図では,見易さのた めに即時推定時の誤差棟数が大きい順に並べ直して3 等分して,縦軸のスケールを変えて描画している.

図 5.2.2-15 実被害情報の利用件数による柏崎諸学校 区別の全壊棟数の推定誤差の推移

この事例計算は、即時推定が全体的に被害を過大 評価する事例である.従って、即時推定の誤差が小 さい、もしくは誤差が負となる小学校区(図5.2.2-15の1番下の図)で、被害情報を融合すると、即時 推定時よりもむしろ誤差が拡大する現象がみられる が、全体的には、各小学校区の被害推定の精度が向 上した.このように、微地形区分によるグループ分 けによって、町丁目字の被害情報を利用して、比較 的小さな地域の被害棟数分布の精度も向上を期待で きることがわかった.

一方,推定精度の向上に必要な実被害情報の量を 知るために,対象地域の全住宅のうち被害の有無が わかっている住宅被害の比率(被害把握率)と被害分 布の更新状況の関係を確認した.図5.2.2-16に柏崎 市内の各小学校区について,学区内の総住宅数のう ち被害情報を融合した町丁目字内の住宅数の割合の 推移を図示する.図5.2.2-16をみると,おおよそ被 害推定精度の変化が落ち着いた20の実被害情報を 利用した段階では,「6.剣野」,「15.米山」,「18.高 柳」のように20~30%の住宅の被害情報が得られ ている小学校区が一部にみられるが,ほとんどは数 %程度の住宅の被害情報しか得ていない.

柏崎市全体では,即時推定により震度5強以上の 地震動が生じたと推定された地域の住宅数数に対す る被害情報を利用した地域の住宅総数の割合を被害 確認率と定義し,被災地域全体での被害情報の融合 件数と被害把握率の関係を図 5.2.2-17 に示す.

先にも述べたとおり、この事例計算では、20市

町村あるいは小学校区の推定被害を得た段階で,概 ね被害を把握できたと判断すると,図5.2.2-17から, 被災地域の1%以下の住宅について被害情報が得ら れれば十分であることがわかる.さらに,長岡市の ように被害の中心地から離れた地区の被害であって も,図5.2.2-14に示すように30市町村の情報を利 用した段階で修正されており,このときの被害確認 率は5%である.このことは,推定被害をベイズ更 新するには,各地域から得る情報は少なくとも,で きるだけ多数の地域の情報を迅速に入手することが 重要であることを示唆する.

図 5.2.2-16 各小学校区の被害状況把握率の推移

図 5.2.2-17 実被害情報件数と被害把握率の関係

(3) 2016 年熊本地震を対象とした事例

(a) 概要

2016年熊本地震では、空中写真を用いた住宅の被 害判読(門馬ほか,2016)行われ、発災後の短時間に 実被害情報を積極的に収集することが現実的な選択 肢となってきた.しかしながら、空中写真の撮影が できても、現状では最終的な判読を目視に頼ってお り、すべての被災地域の被害を判読するには相当の 時間を要することから、まずは少数の地域メッシュ を選択して被害判読を行い、実被害情報として利用 することが考えられる.

そこで,実被害情報を利用する地域の選択方法の 検討に資する目的で,熊本地震の被災地を対象に, いくつかの方針のもとで地域メッシュをランダムに 抽出して,空中写真の判読から得た被害棟数を実被 害情報として融合する事例計算を行った.

熊本地震では、4月14日以後、繰り返し揺れを受けて、被害が進行する事例も報告されているが、本 事例計算では、4月16日に発生した Mj=7.3の地震 (以下、本震)の観測記録に基づいて250mメッシュ 単位で作成した図5.2.2-18の計測震度分布に、内閣 府(2012)による被害関数を適用して推定した被害棟 数を即時推定として扱い、更新の対象とした。

即時推定による 250 m メッシュ単位の全壊棟数, 全半壊棟数をそれぞれ図 5.2.2-19,図 5.2.2-20 に示 す. さらに,推定被害棟数を主な市町村について集 計して,熊本県災害対策本部による被害情報報告(第 126 報平成 28 年 7 月 18 日)と比較して図示した(図 5.2.2-21 と図 5.2.2-22).図 5.2.2-21,図 5.2.2-22 か らわかるように即時推定は被害棟数を過大評価して おり,熊本県全体でみると全壊棟数で約 4 倍(8,322 棟に対して 32,629 棟),全半壊棟数で約 2 倍(41,396 棟に対して 99,992 棟)となっている.

図 5.2.2-18 被害推定に用いた推定震度分布

図 5.2.2-19 即時推定による 250 m メッシュに 含まれる全壊棟数分布

図 5.2.2-20 即時推定による 250 m メッシュに 含まれる全半壊棟数分布

図 5.2.2-21 主な市町村別全壊棟数の即時推定と実績値 の比較

実績値の比較

(b) 誤差モデル

図 5.2.2-18 の震度分布から被災域は主に熊本県であり,大分県の一部を含む程度と推定されるので,地域(県)別のグループ分けは行わず,被害レベル(全壊/全半壊),微地形区分の2種類とした.

図 5.2.2-23 に対象地域の微地形区分分布を示す. また,図 5.2.2-18 に示す推定震度分布で震度 5 強以 上が推定された地域を対象に,平均的な S 波速度の 順に並べ替えた微地形区分別に住宅棟数の累積分布 を図 5.2.2-24 に示す.同図には,東北地方太平洋沖 地震と中越沖地震について同様に作成した図を参考 として重ねた.この図をもとに,各グループが属す る住宅が概ね同程度になるように,また多くの住宅 が属する微地形区分は異なるグループになるように 図 5.2.2-25 のグループを作成した.最適なグループ 数やグループの境界を設定するには,試算を繰り返 して検討する必要であるが,ここでは試行錯誤の結 果,グループ数を増加することで,精度向上が期待 できる最大の数として5グループを採用した.

図 5.2.2-23 熊本地震被災地域の微地形区分分布

図 5.2.2-24 推定震度 5 強以上のメッシュに存在する 微地形区分別の住宅棟数の累積分布率

図 5.2.2-25 微地形区分により設定した更新グループ

(c) 実被害情報

空中写真に基づく被害判読は,建物毎に、レベル 1(空中写真からは被害が確認できない)からレベル 4(大破,倒壊に相当)まで,目視により被害を判読 したもので,具体的な判読基準は,内藤ほか(2018) に詳しい.厳密に考えれば,判読レベルと半壊,全 壊などの被害レベルの違いがあり,被害の推定精度 を議論するには,そもそも判読精度も考える必要が ある.しかし,ここでは議論を実被害情報を用いた 被害推定の更新の観点に絞るため,判読精度や実際 の被害状況との関係には踏み込まず,判読結果を真 値と扱うことにした.また,被害関数との整合のた めに,おおよその被害の程度を対応させた関係から, レベル1を無被害,レベル2を半壊,レベル3とレ ベル4を全壊として扱った.

また,各メッシュで判読した総住宅数は,事前に 整備した住宅棟数データと異なる場合も多い.そこ で,式(5.2.1-8)に含まれる住宅数も実被害情報とす る定式化も可能であるが,ここでは住宅棟数の統計 誤差も被害関数の推定誤差に含めて更新する観点か ら,更新後も含めて住宅総数は事前のデータを利用 した.

実被害情報を利用する地域メッシュは,推定計測 震度から深刻な被害が推測される益城町と,典型的 な被災地域である熊本市東区から抽出することにし て,表 5.2.2-2 に示す6ケースを設定した.

ケース	実被害情報の利用内容
1	益城町10 メッシュ(サンプルケース a)
2	益城町 20 メッシュ(サンプルケース a)
3	益城町 10 メッシュ(サンプルケース b)
4	益城町 20 メッシュ(サンプルケース b)
5	益城町10メッシュ+熊本市東区全体
6	益城町 10 メッシュ + 熊本市東区 10 メッシュ

表 5.2.2-2 熊本地震を対象とした事例計算一覧

表 5.2.2-2 に示すケース1~4 はいずれも益城町 からメッシュを抽出したケースである.

抽出にあたっては、微地形区分によるグループか ら万遍なく実被害情報が得られるように、 益城町内 の全メッシュのうち、20棟以上が存在するものを 選び,これらを微地形区分グループ分けしたあと, 乱数を用いて各グループから4メッシュ、合計20 メッシュを無作為抽出した.また,同様の手順で乱 数を変えて抽出して、2つのサンプルケースを作成 した. これら2つのサンプル(サンプルaとサンプ ルb)から、それぞれ利用する実被害情報を10メッ シュ分とする場合と20メッシュ分とする場合の2 通り、合計4ケースが1~4の計算ケースである. サンプルa(ケース1とケース2に利用)とサンプル b(ケース3とケース4に利用)の抽出メッシュの位 置を推定計測震度分布に重ねてそれぞれ図 5.2.2-26, 図 5.2.2-27 に、また各メッシュの情報を、同じく表 5.2.2-3, 表 5.2.2-4 に示す.

ケース1~4は、益城町という狭い範囲の実被害 情報を集中的に利用する場合に相当する.そこで、 このメッシュ単位の実被害情報に加えて、熊本市東 区の実被害情報を利用する2ケース設定した.

ケース5は,熊本市東区の実被害情報として,① 全住宅棟数56,719棟,全壊758棟,全半壊4,338棟 (熊本市ウェブサイト,2016/10/20閲覧)利用する場 合である.

ケース6は、②熊本市東区からランダムに抽出した10メッシュに仮想的な実被害情報を与えて作成した. この10メッシュの抽出方法は、先に益城町について述べたものと同様である.

熊本市東区の実被害情報は、即時推定で求めた 各メッシュの被害推定棟数に、熊本市東区の実 被害数/同じく即時推定数、すなわち全壊棟数に ついて、758/7405=0.102倍、全半壊棟数について 4338/18217=0.238倍した値を、小数点以下を四捨五 入して設定した.つまり、熊本市東区については、 即時推定に区内の相対的な被害分布に推定誤差がな いという仮定に相当する.

図 5.2.2-28 に、ケース6 で融合するメッシュの位置を推定計測震度分布に重ねて示す.また、メッシュ 情報の一覧を表 5.2.2-5 に示す.

防災科学技術研究所研究資料 第432号 2019年3月

(益城町サンプル a)

(益城町サンプル a)

図 5.2.2-26 実被害情報を利用した地域メッシュ 図 5.2.2-27 実被害情報を利用した地域メッシュ (益城町サンプルb)

щ	mash ID	纷米	半体	壊 全壊	★	微地形区	計測	即時推定/実	被害情報
#	mesh ID	称致	十场		分グループ	震度	全半壊率	全壊率	
1	4930069443	46	2	0	1	5.5	0.7	-	
2	4930167812	23	4	1	3	6.5	2.0	-	
3	4930163342	148	22	56	4	6.6	1.1	1.0	
4	4930160242	55	20	12	5	6.4	0.8	1.1	
5	4930167913	29	9	6	2	6.4	-	-	
6	4930167822	33	10	6	1	6.2	0.7	0.7	
7	4930165541	145	23	45	3	6.5	1.2	1.1	
8	4930163623	43	11	4	2	6.5	1.5	3.5	
9	4930164644	29	6	11	5	6.9	0.9	1.0	
10	4930163313	130	24	17	4	6.4	1.6	2.2	
11	4930162521	28	10	1	1	6.1	1.0	3.4	
12	4930164523	39	2	10	5	6.9	1.9	1.6	
13	4930069432	22	2	1	4	6	1.9	1.3	
14	4930161513	26	5	0	2	6.4	2.1	-	
15	4930164543	118	8	74	3	6.6	0.8	0.6	
16	4930164612	34	3	5	2	6.5	2.0	1.9	
17	4930164631	21	3	6	5	6.9	1.8	2.1	
18	4930164341	78	26	12	4	6.4	1.0	1.7	
19	4930165532	108	22	34	3	6.6	1.1	1.2	
20	4930160443	20	5	0	2	6.3	1.7	-	
	総数	1175	217	301		平均	136%	162%	

表 5.2.2-3 実被害情報を利用した地域メッシュ一覧 表 5.2.2-4 実被害情報を利用した地域メッシュ一覧 (益城町サンプル b)

	1 10	公 米4	平陸 空陸		微地形区	計測	即時推定/実	被害情報
#	mesh ID	総毅	十崁	丧 主壌	分グループ	震度	全半壊率	全壊率
1	4930167822	33	10	6	1	6.2	0.6	0.6
2	4930166832	28	8	3	2	6.4	1.0	2.0
3	4930161532	33	3	0	3	6.4	4.7	-
4	4930163242	42	17	1	4	6.3	0.9	7.6
5	4930163432	42	6	5	5	6.8	2.5	3.9
6	4930069443	46	2	0	1	5.5	0.8	-
7	4930166813	74	13	10	2	6.5	1.5	2.0
8	4930163344	140	12	46	3	6.5	1.2	0.9
9	4930164321	136	23	6	4	6.5	2.4	6.9
10	4930161414	27	10	0	5	6.7	1.8	-
11	4930160544	20	0	0	1	6	-	-
12	4930163842	23	0	0	2	6.3	-	-
13	4930163644	40	11	8	3	6.5	1.0	1.3
14	4930160412	41	6	0	4	6.1	1.6	-
15	4930164644	29	6	11	5	6.9	1.2	1.3
16	4930162521	28	10	1	1	6.1	0.7	2.5
17	4930160434	34	4	3	2	6.3	2.1	2.3
18	4930165611	25	6	7	3	6.5	1.0	1.1
19	4930163433	180	22	66	4	6.6	1.1	1.0
20	4930164511	31	15	1	5	6.9	1.4	17.1
	総数	1052	184	174		平均	153%	362%

図 5.2.2-28 実被害情報を利用した地域メッシュ (益城町と熊本市東区からのサンプリング)

#	mesh ID	纷纷	坐堙	仝]	微地形区 分グループ	計測	即時推定/実被害情報	
#	incoll ID	小心女人	十垓	土坂		震度	全半壊率	全壊率
1	4930069443	46	2	0	1	5.5	0.7	-
2	4930166212	43	14	0	3	6.1	1.8	-
3	4930164323	141	30	18	4	6.4	1.3	1.9
4	4930164644	29	6	11	5	6.9	0.9	1.0
5	4930160544	20	0	0	1	6	-	-
6	4930164443	97	18	17	2	6.6	1.3	1.8
7	4930163431	109	12	43	4	6.6	1.1	0.9
8	4930160242	55	20	12	5	6.4	0.8	1.1
9	4930167822	33	10	6	1	6.2	0.7	0.7
10	4930163641	60	7	10	3	6.5	1.5	1.6
11	4930261332	31	2	0	1	5.7	4.2	-
12	4930167443	99	39	18	2	6.3	4.2	9.8
13	4930167034	126	41	15	3	6.2	4.2	9.8
14	4930167131	162	52	19	4	6.2	4.2	9.8
15	4930150942	31	9	3	5	6.2	4.2	9.8
16	4930260341	20	2	0	1	5.8	4.2	-
17	4930260134	22	3	1	2	5.9	4.2	9.8
18	4930166224	38	11	4	3	6.2	4.2	9.8
19	4930168031	69	23	8	4	6.2	4.2	9.8
20	4930152821	58	20	9	5	6.3	4.2	9.8
	総数	1289	322	194		平均	274%	582%
網掛	け部分は益切	成町か	ら抽出	した」	也域メッ	シュ		

表 5.2.2-5	実被害情報を利用した地域メッシュ一覧
	(益城町と熊本市東区からのサンプリング)

(d) 計算結果と考察

各ケースの融合後の全壊,全半壊の推定被害棟数 を,実績,即時推定とあわせて,被災地全域,益城町, 熊本市について,それぞれ,図 5.2.2-29,図 5.2.2-30, 図 5.2.2-31 に図示した.

ケース1~4はいずれも益城町から判読メッシュ を抽出したものであるが、これらの結果を比べると、 サンプル a を用いたもの (ケース1とケース2) とサ ンプル b を用いたもの (ケース3とケース4) に大き な差がみられる.また、全域と熊本市の推定結果は、 サンプル a、サンプル b とも 10 メッシュの情報を利 用したときに比べ、20 メッシュ融合したときの方が 実績に近づき、多くの情報を融合することで精度が 向上した一方で、益城町では、逆に20 メッシュを 融合した場合の方が、いずれのサンプルケースでも 推定誤差が増えている.

この理由として, 益城町がそれほど大きな地域で はないため、この地域からの10メッシュの実被害 情報がモデル精度の限界に達するに十分な情報量で あったからと考えられる. つまり, 追加の10メッ シュの情報は、推定精度の向上に資することなく、 20 メッシュ融合時には偶然にモデルのばらつきとし て誤差が拡大したものと考えている. これに対して、 熊本市のような広範囲の被害を把握するためには, サンプルbのように10メッシュの情報でおおよそ 更新精度の限界に至る場合もあれば、サンプル aの ようにそうでない場合もあるといえる.融合効果が ある必要十分なメッシュの数は、推定モデルの精度 に依存するが、実際の被害把握では、正解がわから ない中で実被害情報が十分か否かを判断しなければ ならない.実被害情報を追加したときの推定結果の 変化の様子から, さらなる実被害情報の要否を判断 せざるを得ないと考えている.

次に,熊本市東区の情報を追加したケース番号5 と6の結果を考察する.全被害に占める割合が多い 熊本市の情報を融合しているため、これらのケース の結果は、ケース1から4に比べて全体被害棟数は 実績に近い結果になった.しかし、益城町に対して は、被害を過小評価する結果になっている.むしろ、 益城町のだけの10メッシュを利用したケース1や ケース3の方が実績に近いことを考えると、狭い範 囲で十分に実被害情報を入手できている場合には、 敢えて周辺の実情報だけを融合する推定を利用する

図 5.2.2-29 被害棟数の更新の程度の比較(全域)

6638

図 5.2.2-30 益城町の被害棟数の更新の程度の比較

図 5.2.2-31 熊本市の被害棟数の更新の程度の比較

方法も検討する必要と考えられる. 推定被害分布の 更新結果として、市町村単位の全壊棟数と全半壊棟 数を図 5.2.2-32、図 5.2.2-33 に示す.

図 5.2.2-32 市町村別の全壊推定棟数の分布

これらの図には,実績,即時推定,益城町の20メッ シュの実被害情報を用いたケース2とケース4、益 城町の10メッシュと熊本市東区全体の実被害情報 を利用したケース5,益城町と熊本市東区からそれ ぞれ10メッシュの実被害情報を用いたケース6の 結果を比較した.

同図に示すとおり、熊本市東区全体の実被害情報 を反映すると、当然のことながら熊本市の被害棟数 の推定誤差が小さくなり、全体の被害棟数の推定誤 差も小さくなるが、熊本市以外の市町村の被害棟数 を過小評価する.また、益城町のメッシュの実被害 情報だけを用いる場合、サンプルの取り方によって 熊本市の被害棟数の推定結果が大きく異なった.被 災地全域の被害分布を把握する点で、典型的な被災 地域からの実被害情報を考慮することが重要である ことを示す事例といえる.

図 5.2.2-33 市町村別の全半壊推定棟数の分布

また,菊池市は,実被害情報の内容によらず推定 結果は,被害を大きく過大評価している.菊池市に は,周辺の被害状況に比べて強い地震動を観測した 観測点があるため,周辺の推定地震動分布も大きく 推定されている.こうした推定誤差を修正するには, 当該地域周辺の実被害情報を反映するだけでなく, 周辺を別グループとした推定モデルを用いなければ ならないが,被害の全体像を知る前に,現状の微地 形区分を利用した手法で実現することは容易でな い.改良案としては,近隣の観測情報を用いて,局 所的に地震動強さ分布を修正することが考えられる が,修正方法だけでなく,モデルを修正すべき状況 の判断基準などが,今後の検討課題として残されて いる.

5.2.3 ベイズ更新の実行手順の詳細

(1) 概要

本項では,事例計算に用いた手順の詳細として, 図 5.2.1-1 に示すフローチャートの各項目を詳述す る.図 5.2.3-1 には,手順を示す際に用いたパラメ タの一覧をまとめた.

入力データー覧 ・メッシュデータ 対象地域のメッシュ数 N 地震動強さ x_i 、属性別住宅棟数 $n_{i,k}$ 、微地形区分 mg_i 、地区コード gid_i 、地域 コード(都道府県コード) $pref_i$ ($i = 1,, N$)
・推定対象 推定対象とする最低地震動強さS _{min} 推定対象地区数N _{tgt} 推定対象地区の地区コード
・被害情報 被害情報がある地区数 N_d 被害情報がある地区の地区コード ベイズ更新に被害情報を用いる地区別の全壊棟数 $d_{h,j}$ 、半壊棟数 $d_{m,j}$ $(j = 1,, N_d)$
・被害関数パラメタ 被害関数の種別数(建物属性数) N_b 各被害関数の平均 $\mu_{h,k}$ 、標準偏差 $\sigma_{h,k}$ (全壊) 平均 $\mu_{h,m,k}$ 、標準偏差 $\sigma_{hm,k}$ (全半壊) ($k = 1, \dots, N_b$)
・ベイズ更新用解析パラメタ MCMCサンプル数 N_{mc} 、Burn-in期間 N_{bi} MCMCステップ幅標準偏差 σ_{δ} 全壊率と全半壊率の不整合調整用パラメタ ε (十分小さい値) 微地形区分グループの設定グループ数 N_g 地域別区分の設定グループ数 N_r
・誤差パラメタ 誤差パラメタの数 N_p 安全余裕の平均だけを更新する場合 $N_p = 1 + 2N_b + N_g + N_r$ 誤差パラメタの初期値 $\theta_{p,0}$ (デフォルトはすべて0) $\theta_{p,0}$ の内訳 $\theta_{0,0}$:評価手法共通 $\theta_{bh,k,0}$:建物属性別(全壊)($k = 1,, N_b$) $\theta_{bmh,k,0}$:建物属性別(全半壊)($k = 1,, N_b$) $\theta_{gm,0}$:微地形区分グループ別 ($m = 1,, N_g$) $\theta_{r,s,0}$:地域グループ別 ($s = 1,, N_r$)

図 5.2.3-1 開発した手順に用いるパラメター覧

以下の記述は,ある段階で得た実被害情報を融合 する手順,すなわち,先の事例計算の各ステップに 対応するものである.別の実被害情報が追加された 場合,それまでに得た実被害情報とあわせて,同様 の手順を繰り返すことで逐次に実被害情報を融合で きる.

(2) 微地形区分および地域区分グループの設定

データ入力のあと、最初の手順は各メッシュに微 地形区分や地域区分によるグループ番号を割り付け る.対象被災地域がひとつの県程度の場合、地域区 分は考慮しなくてもよいが、地域別区分の設定グ ループ数を *N*_r = 1 とすれば、統一的に扱うことがで きる.図 5.2.3-2 に手順を示す. 2以上の地域区分や微地形区分によるグループ化 を設定すると、とくに実被害情報が少ない発災直後 には、実被害情報が皆無となるグループが発生し得 る.ベイズ更新では原理的に、この状態でも計算で きるが、実際に計算すると、実被害情報が皆無のグ ループに属する地域の被害推定が不安定になるケー スが多く、実被害情報を融合する前に各グループに は少なくとも1つ以上の実被害情報が融合されるよ うにグループ数を調整しておく方がよい.例えば、 5.2.2(1)に述べた2011年東北地方太平洋沖地震の事 例計算で、県によって異なる誤差モデルを設定した のは、これが理由である.

具体的な微地形区分によるグループの数は対象と する地域や、その範囲によって最適な数が異なるが、 上記の不安定現象を避けられる範囲で多くのグルー プ数を設定すれば、大幅に精度を低下させることは 少ない.そこで、本開発では、想定される地域によっ て、できる限り多くのグループに分けられるように、 最大区分数 Ng を入力データで指定し、実被害情報 が得られないグループがなくなるまで徐々に減少さ せる手順とした.

なお,実被害情報は発災後,時間経過とともに増 える一方なので,最大区分数 Ng で実被害情報が融 合されないグループがなければ,以後はこの手順を 省略すればよい.

具体的な最大区分数 N_gは、限られた事例計算に 基づく考察ではあるが、対象範囲が狭い、あるいは 地形の変化が乏しい場合には4 程度、広域の場合や 地形変化に富んでいる場合でも最大8 までがよいと 考えている.

一方,地域区分については,都道府県(以下,簡単のため,県と表記する)別に設定することを想定しているので,対象範囲が決まった時点では自動的に決定する.しかし,ベイズ更新を行う時点ですべての県の実被害情報が揃っていない場合,実被害情報が皆無の県の推定結果は不安的になる可能性がある.

こうした場合の解決法として,例えば,以下の手 順が考えられる.すなわち,一連のデータセットを 複製し,すべてのメッシュの地域区分コードを共通 にしたものを作成する.そして,2つのデータセッ トに対して,後述のMCMCから推定被害棟数の出 力までをそれぞれ平行に処理し,1つでも実被害情 報がある県の被害推定は地域区分を設定したデータ セットから求めた推定値を、1 つも実被害情報がない県の被害推定は、すべてのメッシュの地域区分 コードを共通にしたデータセットから求めた推定値 を利用する.

図 5.2.3-2 微地形区分,地域区分グループの設定手順

(3) 被害情報を反映する前の被害率と尤度の初期値 の計算

グループ設定に続き,実被害情報を融合する前の 被害を推定する手順を図 5.2.3-3 に示す.また,各メッ シュの推定被害率と住宅棟数分布を用いて,市町村 などの被害推定単位の平均推定被害率 $\tilde{p}_{h,j,0}$, $\tilde{p}_{hm,j,0}$ を 計算する.メッシュ別の被害率や被害棟数は別のシ ステムで計算した値を流用してもかまわない.

平均推定被害率を計算したら,平均推定被害率と 融合すべき実被害情報(被害棟数)の対数尤度を計算 する.ここで,半壊棟数の対数尤度を計算するため の項 $ln\{max(\varepsilon, \tilde{p}_{m,j,0} - \tilde{p}_{h,j,0})\}$ は平均全壊確率が平均 全半壊率を越えた場合(この段階では原則生じない) の措置である. ε は十分小さな正の値を設定する. 推定対象となる被害率の精度がせいぜい 0.1% であ ることを考えれば,0.00001以下であれば,値が結 果に及ぼす影響は無視できる.

図 5.2.3-3 被害情報を反映する前の被害率と尤度の初期の計算手順

ベイズ更新における事前分布の尤度は,実被害情 報の尤度に誤差パラメタの初期値の尤度を乗じたも ので,実際の計算では対数の和で計算する.被害関 数にバイアスがあることがわかっているなどの事情 がなければ,誤差パラメタの初期値 θ_{p,0}はすべてゼ ロにする.

 $\theta_{p,0}$ の確率分布を定めるパラメタである $\mu_{\theta,p}$ と $\sigma_{\theta,p}$ の決め方は容易でないが、バイアスを考える根拠がなければ $\mu_{\theta,p}$ =0とする.

標準偏差を,ベイズ更新の原理に従って評価する ならば,事前分布に対する知識の量,すなわち,被 害関数を定めるのに用いたデータが,いま推定しよ うとしている個別の地震による被害を推定する観点 で、何件の実被害情報に相当するかを知る必要がある.しかし、これを文字通りに評価することは極めて困難である.そこで、ここで得られる実際の実被害情報を重視することにして、2~3個の市区町村の実被害情報でも安定した更新が得られる範囲でなるべく大きな値として、試行錯誤的に $\sigma_{\theta,p}$ = 0.1を設定して事例計算を実施した. $\sigma_{\theta,p}$ を大きくするほど、相対的に実被害情報の重みを大きくすることを意味する.試算を重ねるなかで実被害情報が少ない場合に推定値が極端に変動する問題が生じた場合には、 $\sigma_{\theta,p}$ を小さくして変動を抑えるなど、必要に応じて調整をする必要がある.

図 5.2.3-4 MCMC(Markov Chain Monte Carlo) 法による誤差パラメタの事後分布に従うサンプルの生成手順

(4) MCMC (Markov Chain Monte Carlo) 法による誤 差パラメタの事後分布に従うサンプルの生成

ベイズ更新による事後分布は、MCMC により実 被害情報を融合した被害推定の事後分布のサンプル を生成して計算する.その手順を図 5.2.3-4 に示す. 数学的な説明は、5.2.1 に前述したとおりで、基本的 な考え方は安全余裕($\chi_l - \mu_{h,k}$ など)に推定誤差を追加 して、図 5.2.3-3 と同様の計算を繰り返すものである.

注意点として、**5.2.2**の新潟県中越沖地震を対象と した実例計算で述べた実被害情報の全壊棟数、全半 壊棟数がすべてゼロである場合である.この条件で MCMCを実行すると、全壊被害率の事後分布が不安 定になるので、ここでは全壊に対する安全余裕の推 定誤差 $\theta_{bh,k,t} = \theta_{bh,k,t-1} + y_{1+k,t}$ を全半壊に対する安全余裕 の推定誤差 $\theta_{bmh,k,t} = \theta_{bmh,k,t-1} + y_{1+k,t}$ と共通の値にする.

各 MCMC ステップの変動幅 σ_{δ} については試行錯 誤的に決める.この値は、MCMC のサンプル数 N_{mc} や Burn-in 期間 N_{bi} とも関係する. σ_{δ} を小さくする ほどサンプルの移動が遅くなるので、事後分布の全 体を表現できるだけのサンプルを得るためには N_{mc} , N_{bi} を大きくしなければならない.とはいえ, σ_{δ} を 大きくしすぎると,サンプルの分布が不安定になる ことがある.そこで,これらのパラメタの決定にあ たっては,十分な試計算を繰り返して,さまざまな 条件で安定した事後分布を得られることを確認する ほか,システム運用後も得られた経験をフィード バックしながら調整せざるを得ない.調整方針とし ては,計算時間は N_{mc} に比例することから,実用上, 支障のない範囲に計算時間が収まるように, N_{mc} , N_{bi} の上限を考えながら,サンプルの安定性が得られる 範囲で,出来るだけ大きな σ_{δ} を設定できるように 調整する.なお,**5.2.2**に述べた事例計算では, N_{mc} = 15,000, N_{bi} = 5,000 とした.

また,2011年東北地方太平洋沖地震の事例計算で 述べたとおり,地域区分の設定都合により,2組の データセットを用意する場合には,この手順以後を それぞれのデータセットに対して平行に実施するの で,計算量が2倍になることにも注意が必要である.

出力へ

図 5.2.3-5 誤差パラメタのサンプル平均を用いた更新後の推定被害の評価手順

(5) 誤差パラメタのサンプル平均を用いた更新後の 推定被害の評価

MCMC により推定誤差パラメタの事後分布のサ ンプルを生成したあとの被害を評価するための手順 を図 5.2.3-5 に示す.

この手順は, Burn-in 期間のサンプルを棄てたあ とにパラメタの期待値をとって被害率を推定するも ので,式(5.2.3-1),式(5.2.3-2)に記述した一次近似 を利用する.

$$\begin{split} \tilde{d}_{h,i} &= \sum_{j=1}^{q} n_{b,ij} \cdot \int p_{h,ij} \big(r_{h,j}, s_i, \boldsymbol{\theta} \big) f(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} \approx \\ &\sum_{j=1}^{q} n_{b,ij} \cdot p_{h,ij} \big(r_{h,j}, s_i, E[\boldsymbol{\theta}] \big) \end{split}$$
(5.2.3-1)

$$\tilde{d}_{m,i} = \sum_{j=1}^{q} n_{b,ij} \cdot \int p_{m,ij} (r_{m,j}, s_i, \boldsymbol{\theta}) f(\boldsymbol{\theta}) d\boldsymbol{\theta} \approx \sum_{j=1}^{q} n_{b,ij} \cdot p_{m,ij} (r_{m,j}, s_i, E[\boldsymbol{\theta}])$$
(5.2.3-2)

ここで, E[θ]は, Θの期待値を表す.

近似によって、分布の裾野の形状が重要となるような小さな被害確率を評価すると誤差が無視できなくなる恐れがあるので、こうした小さい被害確率 を評価したい場合には、図 5.2.3-5 の手順ではなく、 すべての推定対象地に、安全余裕の推定誤差の各サ ンプルを利用して、それぞれ式(5.2-9)、式(5.2-10) で被害棟数のサンプルを作成してから、期待値をと る方がよい.

また,実被害情報の融合後の推定被害を期待値で はなく,ばらつきを考慮した量で表現する場合にも 同様の手法がよいと考えられる.ただし,一般に式 (5.2-9),式(5.2-10)に含まれる被害率の計算は相対 的に計算負荷が大きく,対象範囲が広くなると,計 算時間が爆発的に長くなる恐れがあるので,改めて 詳細に検討すべきである.

5.2.4 まとめ

強震観測を用いて面的に推定した地震動分布と予め整備した建物棟数データおよび被害関数から求めた被害推定に,逐次,収集される実際の被害情報を融合して,推定精度を向上させる手法を開発した. また,開発手法を2011年東北地方太平洋沖地震,2007年新潟県中越沖地震,2016年熊本地震の被害データを適用して事例計算を実施した.

参考文献

- 防災科学技術研究所(2007): 文部科学省大都市大震 災軽減化特別プロジェクト III.1 震災総合シミュ レーションシステムの技術の開発 III.2 大都市特 性を反映する先端的な災害シミュレーションの技 術の開発公開ソフトウェア.
- Gardoni, P., Der Kiureghian, A. and Mosalam, K. M. (2002) : Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations, Journal of Engineering Mechanics, Vol.128, No.10,pp.1024-1038.
- Hastings, W. K. (1970) : Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, Vol.57, No.1, pp.97-109.
- 柏崎市(2016):小中学校の通学区域, http://www. city.kashiwazaki.lg.jp/gakuji/kyoiku/kyoiku/gakko/ tsugakukuiki.html(2016年1月13日確認)
- 株式会社小堀鐸二研究所(2016):地震被害推定情報 と実被害情報の統合評価高度化支援業務報告書.
- 日下彰宏・岡野創・中島正愛(2015):安全余裕の推 定誤差の相関を考慮した鋼構造梁端部破壊確率の ベイズ更新,日本建築学会構造系論文集,No.80, Vol.712, pp.851-860.
- 国土交通省(2008): 平成19年(2007年)新潟県中 越沖地震における液状化に関する被害調査報告, http://www.mlit.go.jp/kisha/kisha08/05/050121/02. pdf(2016年1月15日確認)
- 松岡昌志・若松加寿江・藤本一雄・翠川三郎(2005): 日本全国地形・地盤分類メッシュマップを利用し た地盤の平均S波速度分布の推定,土木学会論文 集,No.791/I-72, pp.239-251.
- 門馬直一・藤原広行・中村洋光・佐伯琢磨・下村博之・ 山田哲也・藤澤誠二(2016):平成28年(2016年) 熊本地震における益城町の震度分布と建物被害の

関係,日本地震工学会・大会梗概集.

- 内閣府(2012):南海トラフの巨大地震モデル検討 会.
- 内藤昌平・門馬直一・中村洋光・藤原広行・下村博 之・山田哲也(2018):航空写真目視判読にもとづ く 2016 年熊本地震による建物被害調査,土木学 会論文集 A1 特集号 Vol.74 No.4,地震工学論文集 第 37 巻.
- 能島暢呂・杉戸真太・金澤伸治(2001):被害情報の 逐次処理による地震時緊急対応の意思決定支援 モデル,土木学会論文集,No. 682/I-56, pp.129-142.
- 能島暢呂・杉戸真太・金澤伸治(2003):地震動情報 と実被害情報の統合処理による緊急対応支援の数 理モデル,土木学会論文集,No.724/I-62, pp.225-238.
- 境有紀(2013):2011年東北地方太平洋沖地震で発生 した地震動と建物被害の対応性一建物の大きな被 害をより正確に推定する地震動強さ指標,日本建 築学会構造系論文集,No.78,Vol.683,pp.35-40.
- 総務省消防庁災害対策本部 (2015):平成23年 (2011 年)東北地方太平洋沖地震 (東日本大震災) につい て(第151報).