April 2020 •

南海トラフ沿いの地震に対する確率論的津波ハザード評価 - 第一部 本編 -

Probabilistic Tsunami Hazard Assessment for Earthquakes Occurring along the Nankai Trough

防災科学技術研究所研究資料 第四三九号 南海 トラフ沿 67 \mathcal{O} 地震に対す る確率論的津波 ハ ザ ド 評 価 第 ____ 部 本編 防災科学技術研究所

National Research Institute for Earth Science and Disaster Resilience Tennodai 3-1, Tsukuba, Ibaraki 305-0006, Japan

第439号

Technical Note of the National Research Institute for Earth Science and Disaster Resilience: No.439

– Volume 1 Part I –

国立研究開発法人 究所

防災科学技術研究所研究資料

第 373 号	阿蘇山一の宮および白水火山観測井コア試料の岩相記載(付録 CD-ROM) 48pp. 2013 年 2 月発行
第 374 号	霧島山万膳および夷守台火山観測井コア試料の岩相記載(付録 CD-ROM) 50pp. 2013 年 3 月発行
第 375 号	新庄における気象と降積雪の観測(2011/12 年冬期) 49pp. 2013 年 2 月発行
第 376 号	地すべり地形分布図 第 51 集「天塩・枝幸・稚内」 20 葉 (5 万分の 1). 2013 年 3 月発行
第 377 号	地すべり地形分布図 第 52 集「北見・紋別」 25 葉 (5 万分の 1). 2013 年 3 月発行
第 378 号	地すべり地形分布図 第 53 集「帯広」 16 葉 (5 万分の 1). 2013 年 3 月発行
第 379 号	東日本大震災を踏まえた地震ハザード評価の改良に向けた検討 349pp. 2012 年 12 月発行
第 380 号	日本の火山ハザードマップ集 第2版(付録 DVD) 186pp. 2013 年 7 月発行
第 381 号	長岡における積雪観測資料 (35)(2012/13 冬期) 30pp. 2013 年 11 月発行
第 382 号	地すべり地形分布図 第 54 集「浦河・広尾」 18 葉 (5 万分の 1).2014 年 2 月発行
第 383 号	地すべり地形分布図 第 55 集「斜里・知床岬」 23 葉 (5 万分の 1).2014 年 2 月発行
第 384 号	地すべり地形分布図 第 56 集「釧路・根室」 16 葉 (5 万分の 1). 2014 年 2 月発行
第 385 号	東京都市圏における水害統計データの整備(付録 DVD) 6pp. 2014 年 2 月発行
第 386 号	The AITCC User Guide –An Automatic Algorithm for the Identification and Tracking of Convective Cells- 33pp. 2014 年 3 月発行
第 387 号	新庄における気象と降積雪の観測(2012/13 年冬期) 47pp. 2014 年 2 月発行
第 388 号	地すべり地形分布図 第 57 集 「沖縄県域諸島」 25 葉 (5 万分の 1).2014 年 3 月発行
第 389 号	長岡における積雪観測資料 (36) (2013/14 冬期) 22pp. 2014 年 12 月発行
第 390 号	新庄における気象と降積雪の観測(2013/14 年冬期) 47pp. 2015 年 2 月発行
第 391 号	大規模空間吊り天井の脱落被害メカニズム解明のためのE-ディフェンス加振実験 報告書 -大規模空間吊り天
	井の脱落被害再現実験および耐震吊り天井の耐震余裕度検証実験- 193pp. 2015 年 2 月発行
第 392 号	地すべり地形分布図 第 58 集 「鹿児島県域諸島」 27 葉 (5 万分の 1). 2015 年 3 月発行
第 393 号	地すべり地形分布図 第 59 集「伊豆諸島および小笠原諸島」 10 葉 (5 万分の 1). 2015 年 3 月発行
第 394 号	地すべり地形分布図 第 60 集「関東中央部」 15 葉(5 万分の 1).2015 年 3 月発行
第 395 号	水害統計全国版データベースの整備.発行予定
第 396 号	2015 年 4 月ネパール地震(Gorkha 地震) における災害情報の利活用に関するヒアリング調査 58pp. 2015 年 7 月発行
第 397 号	2015 年 4 月ネパール地震 (Gorkha 地震) における建物被害に関する情報収集調査速報 16pp. 2015 年 9 月発行
第 398 号	長岡における積雪観測資料 (37)(2014/15 冬期) 29pp. 2015 年 11 月発行
第 399 号	東日本大震災を踏まえた地震動ハザード評価の改良(付録 DVD) 253pp. 2015 年 12 月発行
第 400 号	日本海溝に発生する地震による確率論的津波ハザード評価の手法の検討(付録 DVD) 216pp. 2015 年 12 月発行
第 401 号	全国自治体の防災情報システム整備状況 47pp. 2015 年 12 月発行
第 402 号	新庄における気象と降積雪の観測(2014/15 年冬期) 47pp. 2016 年 2 月発行
第 403 号	地上写真による鳥海山南東斜面の雪渓の長期変動観測(1979 ~ 2015 年) 52pp. 2016 年 2 月発行
第 404 号	2015 年 4 月ネパール地震 (Gorkha 地震) における地震の概要と建物被害に関する情報収集調査報告 54pp.
	2016 年 3 月発行
第 405 号	土砂災害予測に関する研究集会-現状の課題と新技術-プロシーディング 220pp. 2016 年 3 月発行
第 406 号	津波ハザード情報の利活用報告書 132pp. 2016 年 8 月発行
第 407 号	2015 年 4 月ネパール地震 (Gorkha 地震) における災害情報の利活用に関するインタビュー調査 -改訂版-
	120pp. 2016 年 10 月発行
第 408 号	新庄における気象と降積雪の観測(2015/16年冬期) 39pp. 2017年2月発行
第 409 号	長岡における積雪観測資料 (38) (2015/16 冬期) 28pp. 2017 年 2 月発行
第 410 号	ため池堤体の耐震安全性に関する実験研究 - 改修されたため池堤体の耐震性能検証- 87pp. 2017 年 2 月発行
第 411 号	土砂災害予測に関する研究集会-熊本地震とその周辺-プロシーディング 231pp. 2017 年 3 月発行
第 412 号	衛星画像解析による熊本地震被災地域の斜面・地盤変動調査 -多時期ペアの差分干渉 SAR 解析による地震後の
	変動抽出- 107pp. 2017 年 9 月発行
第 413 号	熊本地震被災地域における地形・地盤情報の整備 -航空レーザ計測と地上観測調査に基づいた防災情報データ
	ベースの構築- 154pp. 2017 年 9 月発行
第 414 号	2017 年度全国市区町村への防災アンケート結果概要 69pp. 2017 年 12 月発行
第 415 号	全国を対象とした地震リスク評価手法の検討 450pp. 2018 年 3 月発行予定
第 416 号	メキシコ中部地震調査速報 28pp. 2018 年 1 月発行

防災科学技術研究所研究資料

, ·	
第 418 号	土砂災害予測に関する研究集会 2017 年度プロシーデ
第 419 号	九州北部豪雨における情報支援活動に関するインター
第 420 号	液状化地盤における飽和度確認手法に関する実験的
	驗一 62pp. 2018 年 8 月発行
第 421 号	新庄における気象と降積雪の観測(2016/17 年冬期)
第 422 号	2017 年度防災科研クライシスレスポンスサイト(NIE
第 423 号	耐震性貯水槽の液状化対策効果に関する実験研究 -
	48pp. 2018 年 12 月発行
第 424 号	バイブロを用いた起振時過剰間隙水圧計測による原
	に向けた土槽実験の試み- 52pp. 2019 年 1 月発行
第 425 号	ベントナイト系遮水シートの設置方法がため池堤体の
第 426 号	蛇籠を用いた耐震性道路擁壁の実大振動台実験および
	114pp. 2019 年 2 月発行
第 427 号	津波シミュレータ TNS の開発 67pp. 2019 年 3 月季
第 428 号	長岡における積雪観測資料(40)(2017/2018冬期) 2
第 429 号	配管系の弾塑性地震応答評価に対するベンチマーク
第 430 号	津波浸水の即時予測を目的とした津波シナリオバン
第 431 号	土砂災害予測に関する研究集会 2018 年度プロシーデ
第 432 号	全国を概観するリアルタイム地震被害推定・状況把想
第 433 号	新庄における気象と降積雪の観測(2017/18 年冬期)
第 434 号	SIP4D を活用した災害情報の広域連携に関する取
	2019年6月発行
第 435 号	SIP4D を活用した災害情報の広域連携に関する取り
	2019年7月発行
第 436 号	平成30年7月豪雨(西日本豪雨)の被災自治体におい
	年9月発行
第 437 号	SIP4D 利活用システム技術仕様書・同解説 142pp.
第 438 号	SIP4D を活用した災害情報の広域連携に関する取り
	2019年12月発行

- 編集委	員会 -	防災
(委員長)	淺野 陽一	
(委 員) 三輪 学央 河合 伸一 山崎 文雄 中村いずみ	加藤 亮平 三浦 伸也 平島 寛行 市橋 歩	編発
(事務局) 三浦 伸也 池田 千春 (編集・校正)	前田佐知子 樋山 信子	印

© National Research Institute for Earth Science and Disaster Resilience 2020

※防災科学技術研究所の刊行物については、ホームページ(http://dil-opac.bosai.go.jp/publication/)をご覧下さい.

第417号 長岡における積雪観測資料(39)(2016/17 冬期) 29pp. 2018 年 2 月発行 ディング 149pp. 2018 年 3 月発行 ビュー調査 90pp. 2018 年7月発行 の研究 -不飽和化液状化対策模型地盤を用いた模型振動台実 45pp. 2018 年 11 月発行 ED-CRS)の構築と運用 56pp. 2018 年 12 月発行 - 液状化による浮き上がり防止に関する排水性能の確認-位置液状化強度の評価手法の検討-原位置液状化強度の評価 の耐震性に与える影響 102pp. 2019 年1月発行 び評価手法の開発-被災調査から現地への適用に至るまで-発行 29pp. 2019 年 2 月発行 解析 72pp. 2019 年 3 月発行 クの構築 169pp. 2019 年 3 月発行 ディング 65pp. 2019 年 3 月発行 握システムの開発 311pp. 2019年3月発行 51pp. 2019 年 3 月発行 り組み - 南西レスキュー 30 における活動報告- 158pp.

) 組み -みちのく ALERT2018 における活動報告- 140pp.

ける災害情報システムの活用実態に関する調査 60pp. 2019

2019年10月発行 組み - かもしか RESCUE2019 における活動報告- 46pp.

災科学技術研究所研究資料 第 439 号 - 第一部 本編 -

令和2年4月30日発行

扁集兼 国立研究開発法人 ^能行者 防災科学技術研究所 〒 305-0006 茨城県つくば市天王台3-1 電話 (029)863-7635 http://www.bosai.go.jp/

印刷所前田印刷株式会社 茨城県つくば市山中152-4

南海トラフ沿いの地震に対する確率論的津波ハザード評価 -第一部本編-

藤原広行^{*1}•平田賢治^{*1}•中村洋光^{*1}•森川信之^{*1}•河合伸一^{*1}•前田宜浩^{*1}•大角恒雄^{*1}• 土肥裕史^{*1}•松山尚典^{*2}・遠山信彦^{*2}・鬼頭 直^{*2}•大嶋健嗣^{*2}・村田泰洋^{*3}• 齊藤 龍^{*3}•澁木智之^{*3}•秋山伸一^{*4}•是永眞理子^{*4}•阿部雄太^{*4}• 橋本紀彦^{*4}•袴田智哉^{*4}•大野哲平^{*4}

Probabilistic Tsunami Hazard Assessment for Earthquakes Occurring along the Nankai Trough

– Volume 1 Part I –

Hiroyuki FUJIWARA^{*1}, Kenji HIRATA^{*1}, Hiromitsu NAKAMURA^{*1}, Nobuyuki MORIKAWA^{*1}, Shinichi KAWAI^{*1}, Takahiro MAEDA^{*1}, Tsuneo OHSUMI^{*1}, Yuji DOHI^{*1}, Hisanori MATSUYAMA^{*2}, Nobuhiko TOYAMA^{*2}, Tadashi KITOU^{*2}, Kenshi OHSHIMA^{*2}, Yasuhiro MURATA^{*3}, Ryu SAITO^{*3}, Tomoyuki SHIBUKI^{*3}, Shinichi AKIYAMA^{*4}, Mariko KORENAGA^{*4}, Yuta ABE^{*4}, Norihiko HASHIMOTO^{*4}, Tomoya HAKAMATA^{*4}, and Teppei ONO^{*4}

*1 National Research Institute for Earth Science and Disaster Resilience
 *2 OYO Corporation
 *3 Kokusai Kogyo Co., LTD.
 *4 Itochu Techno-Solutions Corporation

^{*1}国立研究開発法人 防災科学技術研究所

^{*2} 応用地質株式会社

^{*3} 国際航業株式会社

^{*4} 伊藤忠テクノソリューションズ株式会社

1.	はじめに	1-1
	1.1 本研究資料(第一部本編)をまとめた背景	1-1
	1.2 本研究資料(第一部本編)の構成	1-1
	1.3 本研究資料(第一部本編)における確率論的津波ハザード評価の概要	1-2
	1.4 本研究資料(第一部本編)において用いた主な用語	1-3
	1 章の参考文献	1-4
2.	確率論的津波ハザード評価手法のレビュー	2-1
	2.1 確率論的地震ハザード評価手法	2-1
	2.2 確率論的津波ハザード評価手法	2-3
	2.2.1 確率論的津波ハザード評価の概要	2-3
	2.2.2 波源断層モデル設定の考え方	2-4
	2.2.3 地形モデルの作成	2-14
	2.2.4 数值計算手法	2-29
	2.2.5 津波ハザードカーブの計算	2-33
	2.2.6 発生確率の評価方法	2-34
	2.2.7 不確定性の扱い	2-34
	2.3 海外での研究事例	2-37
	2 章の参考文献	2-40
3.	地震活動に関するデータ	3-1
	3章の参考文献	3-6
4.	津波痕跡に関するデータ	4-1
	4.1 津波痕跡に関するデータベースのレビュー	4-1
	4.2 南海トラフ沿いの地震による津波痕跡データ	4-7
	4 章の参考文献	4-15
5.	本研究資料(第一部本編)で用いる確率論的津波ハザード評価手法	5-1
	5.1 確率論的津波ハザード評価の基本的な考え方	5-1
	5.2 評価手法	5-2
	5.2.1 確率論的津波ハザード評価の流れ	5-2
	5.2.2 ハザードカーブの算定	5-3
	5.3 津波高さに関わる不確定性	5-4
	5.3.1 不確定性の考え方	5-4
	5.3.2 ばらつきの設定	5-4
	5.3.3 ばらつきの打ち切り範囲の検討	5-7
	5 章の参考文献	5-8
6.	確率論的津波ハザード評価のためのプレート間地震の波源断層モデルの設定	6-1
	6.1 津波の発生要因	6-1
	6.2 プレート間地震の波源断層モデルのパラメータの検討	6-2
	6.2.1 地震モーメント M ₀ と断層面積 S の関係式	6-2
	6.2.2 すべり角	6-3
	6.2.3 震源域の剛性率	6-4
	6.2.4 大すべり域,超大すべり域の面積比	6-12
	6.2.5 大すべり域,超大すべり域の形状	6-21
	6.2.6 超大すべり域のすべり量	6-22
	6.3 南海トラフ沿いで設定したプレート間地震の波源断層モデル群	6-25
	6.3.1 波源断層モデルとして設定すべき項目	6-25
	6.3.2 プレート形状,対象領域および要素断層の設定	6-27
	6.3.3 波源断層モデル群	6-29
	6章の参考文献	6-41

7.	確率論的津波ハザード評価のための津波伝播遡上計算	
	7.1 地形モデル	
	7.1.1 地形モデルの作成手順	
	7.1.2 南海トラフ沿いの地震による津波伝播遡上計算に用いる地形モデル	
	7.2 初期水位分布の計算	
	7.2.1 海底地形の水平変動を考慮した初期水位分布計算手法	
	7.2.1.1 変動量と初期水位	
	7.2.1.2 地殻変動の補間計算手法の検討	
	7.2.1.3 海岸の最大水位上昇量の定義	
	7.2.2 梶浦フィルター	
	7.3 本研究資料で用いる津波伝播遡上計算	
	7.3.1 計算手法	
	7.3.2 評価点の設定	
	7.3.3 計算時間の検討	
	7.4 計算結果	
	7 章の参考文献	
8.	南海トラフ沿いの地震に対する確率論的津波ハザード評価	
	8.1 確率論的津波ハザード評価の概要	
	8.1.1 地震の多様性の表現形式	
	8.1.2 地震の発生確率の設定	
	8.1.3 計算された最大水位上昇量の確率論的取扱い	
	8.1.4 最大水位上昇量の補正	
	8.1.5 計算された最大水位上昇量の不確かさ	
	8.2 想定する震源域パターン	
	8.2.1 次の地震サイクル	
	8.2.2 E 領域の破壊	
	8.2.3 Z 領域(日向灘領域)の破壊	
	8.2.4 傾斜方向の破壊	
	8.2.5 設定した震源域パターン,地震パターンのまとめ	
	8.3 震源域パターン, 地震パターンへの重み配分	
	8.3.1 震源域パターンの走向方向および傾斜方向の連動規模に関する分類と重み配分	
	8.3.2 震源域パターンの傾斜方向の拡がり方に関する重み配分	
	8.3.3 震源域パターンの走向方向の拡がり方と組合せに関する重み配分	
	8.3.3.1 グループIの地震群	
	8.3.3.2 グループ II の地震群	
	8.3.4 震源域パターンへの重み配分	
	8.3.5 地震パターンへの重み配分	
	8.4 確率論的津波ハザード評価の結果	
	8.4.1 ハザード評価標本点に対するハザードカーブ	
	8.4.2 ハザードカーブの観察	
	8.4.2.1 ハザードカーブにおいて観察される基本的なハザードの特徴	
	8.4.2.2 ハザード再分解からわかること	
	8.5 異なる重み配分が確率論的津波ハザード評価に与える影響	
	8.5.1 重み配分の認識論的不確定性	
	8.5.2 最大クラスの地震に対する重み配分の認識論的不確定性の影響	
	8.5.3 震源域パターンの傾斜方向の拡がり方および走向方向の拡がり方と	
	組合せに対する重み配分の認識論的不確定性の影響	
	8章の参考文献	

9.	. 南海トラフ沿いの地震に対する確率論的な津波ハザード分布図	
	9.1 30 年超過確率分布図	
	9.2 確率論的な最大水位上昇量分布図	
	9.3 最大クラスの地震等を考慮した影響	
10.	0. 特性化した波源断層モデルの妥当性の検討	
	10.1 検討方法	
	10.2 1707 年宝永地震の津波痕跡を用いた再現性の検討	
	10.3 1854 年安政東海地震の津波痕跡を用いた再現性の検討	
	10.4 1854 年安政南海地震の津波痕跡を用いた再現性の検討	
	10.5 1944 年昭和東南海地震の津波痕跡を用いた再現性の検討	
	10.6 1946 年昭和南海地震の津波痕跡を用いた再現性の検討	
	10.7 まとめ	
	10 章の参考文献	
11.	1. 平均応力降下量の津波高さへの影響の検討	11-1
	11.1 背景	11-1
	11.2 検討モデルの設定	11-1
	11.3 津波伝播遡上計算に基づく検討	11-4
	11.4 結果の検証	11-21
	11 章の参考文献	
12.	2. まとめと今後の課題	
	12.1 まとめ	
	12.2 今後の課題	
	12 章の参考文献	
謝	射辞	i
編	幕集後記	ii

<巻末資料>

1. トフノ 液原断層セテルリム	毎トラフ 波源断層モデルリス	くト
-----------------------------	----------------	----

- 2. 南海トラフ 波源断層モデル図
- 3. 南海トラフ ハザード評価点, ハザード評価標本点, 水位時系列抽出点

< DVD 資料 1 >

- 1. 南海トラフ 波源断層モデルリスト
- 2. 南海トラフ 波源断層モデル図(震源域 Nos.1~83)
- 3. 南海トラフ ハザード評価点, ハザード評価標本点, 水位時系列抽出点
- 4. 南海トラフ 最大水位上昇量分布図(震源域 Nos.1~20)

< DVD 資料 2 >

4. 南海トラフ 最大水位上昇量分布図(震源域 Nos.21~83)

- 5. 南海トラフ 30 年超過確率分布図および確率論的な最大水位上昇量分布図
- 6. 南海トラフ ハザードカーブ図

1. はじめに

1.1 本研究資料(第一部本編)をまとめた背景

平成23年3月11日,日本海溝沿いで*M*,9.0の東 北地方太平洋沖地震が起きた.この超巨大地震に伴 い,巨大な津波が発生し,東北地方太平洋岸一帯に 甚大な被害を及ぼした.「東日本大震災」と名付けら れたこの甚大被害の影響は9年が経過した現在も現 地にその爪痕を残している.

この大災害を契機として翌平成24年度,防災科 学技術研究所は, 津波ハザード評価研究プロジェク トを開始した. 東日本大震災が起きる前の我が国の 津波評価はいわゆる決定論的な津波評価が主流で あった.決定論的な津波評価では,評価対象の海岸 施設等に被害を及ぼす可能性のある、当該海域で発 生し得る地震を津波波源として考慮し,津波伝播遡 上計算を実施,計算された津波の高さあるいは浸水 高や浸水範囲を推定する. そこでは、津波を過小評 価しないという方針のもと、例えば津波伝播遡上計 算に用いる潮位を評価対象海域の平均海面ではなく 朔望平均満潮位に設定するなどの工夫がなされては いたものの、津波波源として考慮するのは当該海域 の既往最大の地震であった. すなわち, 過去経験し たことがない(それが起きたことが知られていない) 規模を超える巨大地震が起きる可能性は考慮されて いなかった.

東日本大震災の津波を適切に予想することができ なかったという反省に基づき、本研究プロジェクト では、過去発生したことは知られていないが、もし も発生したならば甚大な被害が発生し得る、既往最 大を超える規模の地震も科学的知見に基づき合理的 に想定し、将来の津波ハザード評価に取り込むこと を1つの目標とした.

一般に、将来起こり得る自然現象の予測や評価 は、不確定性を無視して行うことはできない.過去 の自然現象に学び、その決定論的なシミュレーショ ンモデルを持つことは将来の予測や評価には不可欠 であるが、それだけでは十分ではない.我々はまだ 未経験の「将来」に由来する不確定性、あるいはシ ミュレーショモデルの不完全性などに由来する予測 誤差という問題に必ず直面することになる.確率論 的なアプローチは、将来の予測や評価と不可分な各 種の不確定性を系統的に整理・導入し、あるいは予 測誤差を合理的に導入し、組織的論理構造のもとで 的確な工学的判断を行うための手段を提供する.このような認識のもと、本研究プロジェクトでは従来 採用されてきた決定論的な津波評価ではなく、確 率論的な津波評価手法 (Probabilistic Tsunami Hazard Assessment)を採用することにした.

確率・統計の概念に基づき,既にいくつかの津波 評価手法が提案されている(Geist and Parsons, 2006; Annaka et al., 2007;土木学会原子力土木委員会津波 評価部会,2009;土木学会原子力土木委員会津波評 価小委員会,2016;杉野・他,2011).とりわけ地 震性の津波の確率論的津波評価手法は、今後も検討・ 解決すべき課題はいくつか残っているものの、実用 に供しても差し支えないレベルに達していると考え られる.実際,わが国の原子力発電所に対する基準 津波の評価に,確率論的な評価手法が導入され、津 波に対する原子力発電所施設の安全性の審査に活用 され始めている(岩淵・他,2014).

1.2 本研究資料(第一部本編)の構成

本研究資料(第一部本編)(研究資料第439号第一 部本編のこと)は、1.はじめに、2.確率論的津波ハ ザード評価手法のレビュー、3.地震活動に関する データ、4.津波痕跡に関するデータ、5.本研究資料 (第一部本編)で用いる確率論的な津波ハザード評価 手法、6.確率論的津波ハザード評価のためのプレー ト間地震の波源断層モデルの設定、7.確率論的津波 ハザード評価のための津波伝播遡上計算、8.南海 トラフ沿いの地震に対する確率論的津波ハザード評 価、9.南海トラフ沿いの地震に対する確率論的な津 波ハザード分布図、10.特性化した波源断層モデル の妥当性の検討、11.平均応力降下量の津波高さへ の影響の検討、12.まとめと今後の課題、の12章で 構成されている.

本研究資料(第一部本編)を取りまとめる前段階と して,防災科学技術研究所では,日本海溝沿いで 発生する地震に伴う津波を対象に,確率論的な津 波ハザード評価手法の試案を公表した(藤原・他, 2015).そこで検討された,プレート間地震に対す る特性化波源断層モデルの設定方法,津波伝播遡上 計算の方法および,海域・陸域の地形モデルの設定 方法は,それぞれ本研究資料(第一部本編)の6章お よび7章の基礎部分を構成している.

本研究資料(第一部本編)における主題は南海トラ

フ治いの大地震に対する確率論的津波ハザード評価 である.その評価結果のみを知りたければ8章およ び9章を参照すると良い.南海トラフ沿いに設定し た特性化波源断層モデル群についての詳細が知りた ければ6章を,津波伝播遡上計算の詳細が知りたけ れば7章を,南海トラフ沿いの地震を特性化するの に使用した特性化波源断層モデルの妥当性について 知りたければ10章を,それぞれ参照すると良い.

1.3 本研究資料 (第一部本編) における確率論的津波 ハザード評価の概要

本研究資料(第一部本編)では,「南海トラフの 地震活動の長期評価(第二版)」(地震調査委員会, 2013)(以下,長期評価と省略)に基づき,南海トラ フ沿いで発生する大地震の多様性を表現するため に,断層すべり量やその空間的不均質性を特性化し た断層モデル群(本研究資料(第一部本編)では「特性 化波源断層モデル群」と呼ぶ)を構築した(6章).な お,本研究資料(第一部本編)では,南海トラフ沿い で発見されている分岐断層を確率論的津波ハザード 評価に加えていない.分岐断層については知見の蓄 積を待ちたい.

本研究資料(第一部本編)において構築された特性 化波源断層モデル群の地震規模は*M*8クラスから最 大クラス(長期評価で設定された南海トラフ沿いお よび日向灘沿いの地震発生領域が全域にわたり同時 に破壊した場合)をカバーしており,まれにしか起 こらない極低頻度の巨大津波ハザードも評価に含ん でいる.他方,地震調査委員会(2020)では,*M*8ク ラスから*M*9までの地震規模の津波を評価対象とし ており,極低頻度の巨大津波ハザードの評価が含ま れていない.両者の評価を比べる場合に,評価対象 としている地震規模の範囲が異なっていることに注 意しなくてはいけない.なお,地震調査委員会(2020) と等価な確率論的津波ハザード評価は,本研究資料 (第一部付録編)に掲載しているので,必要に応じて 参照されたい.

特性化波源断層モデルの断層すべり量の空間的不 均質性に関しては,平均すべり量の2倍のすべり量 を持つ大すべり域および背景すべり領域の2種類の すべり量を与えることで表現した(一部に例外あり. 詳しくは6章を参照のこと).また,断層上端がト ラフ軸に到達し,規模が極端に小さくない地震の場 合は、上記の2種類のすべり不均質に加え、平均す べり量の4倍のすべり量を持つ超大すべり域も設定 することとした(6章). なお、地震調査委員会(2020) では、断層上端がトラフ軸に到達している場合にお いても、波源断層モデルに超大すべり域は設定され ていないことに注意されたい.

過去,南海トラフ沿いでは南海地震と東南海地震 が時間的に近接して発生していることから,1つの 大地震だけを評価対象とするのではなく,複数の大 地震が時間的に近接して発生する可能性も考慮し, 南海トラフ沿いの大地震活動1サイクル中で起こり 得る大地震の組合せパターン群(本研究資料(第一部 本編)では「震源域パターン群」あるいは「地震パター ン群」と呼ぶ)を多数設定することとした(8章).

地震活動1サイクル中で発生し得る大地震の組合 セパターン1つ1つに対する重み(大地震の起こり やすさの相対確率)配分については、地震調査委員 会(2020)の確率論的津波ハザード評価における考え 方を基本的に採用することとした.残念ながら、地 震調査委員会(2020)では極低頻度事象として考慮さ れ得る最大クラスの地震群をその評価対象から除い ており、その地震群に対する重みが検討されていな い.そのため本研究資料(第一部本編)では、「全国 地震動予測地図 2014 年版」(地震調査委員会, 2014) と同様な考え方を採用し、最大クラスの地震群に対 して重みを設定することとした(8章).

本研究資料(第一部本編)では,海岸(汀線)に沿っ て設けられた数十万点を超えるハザード評価点にお いて推定されたハザードカーブ群から,30年超過 確率分布図および確率論的に予想される最大水位上 昇量分布図を作成した(9章).南海トラフに面した 太平洋沿岸地域のどこの海岸が他に比べて相対的に 津波に襲われる可能性が高いか低いかを知りたけれ ば,このような分布図を見るとわかりやすい.

今回,確率論的津波ハザード評価を行うため,異 なる地震規模,異なるすべり不均質を有する多種多 様な多数のプレート間地震を,特性化した波源断層 モデルで表現した.その特性化手法は,地震調査研 究推進本部地震調査委員会から公表された「波源断 層を特性化した津波の予測手法(津波レシピ)」(地震 調査委員会,2017)に基づいている.本研究資料(第 一部本編)では,18世紀から20世紀にかけて南海 トラフ沿いで発生した大地震による津波の痕跡高分 布と、津波レシピに基づき計算された津波の計算高 分布を比較することによって、今回用いた特性化手 法が妥当であることを検証している(10章). 1.4 本研究資料(第一部本編)において用いた主な用語

本研究資料(第一部本編)で用いた主要な科学技術 用語を表 1.4-1 に示す.

用語	定 義・意 味	用語	定 義・意 味
偶然的ば らつき	ハザード評価の枠組みにおいて,偶然的不 確定性(次段参照)を内包する現象は,偶然 的ばらつき(aleatory variability)によって表	超 過 確 率 分 布 図	海岸線に沿って定義された複数のハザード 評価点に対して推定された超過確率の分布 図.
	現される. なお, 偶然的ばらつきは, 単に, ばらつき (variability) とも呼ばれる. 本研究 資料 (第一部本編)の確率論的津波ハザード 評価では, 1本のハザードカーブを計算す	津波高さ	最大水位上昇量,最大水位(T.P.),津波高, 津波波高など特定せず,これらを含めて, 一般的な津波の高さを表現したい場合に使 用する.
偶然的不 確定性	る除にはらうざか考慮される。 現象の偶然性に起因する不確定性.本研究 資料(第一部本編)の津波ハザード評価の枠 組みにおいては、地震規模、断層の不均質	津波伝播 遡上計算	本研究資料(第一部本編)では,流体の運動方程式と連続の式から導かれる非線形長 波式を差分法で解いて津波伝播遡上計算を 行った.詳細は7章を参照のこと.
	9、り重分布など、現在の科学的知見では 一意に予測することが不可能なパラメタを 偶然的不確定性 (aleatory uncertainty) として 扱う	特性化波 源断層モ デル	断層すべり不均質性が特性化された波源断 層モデルを「特性化波源断層モデル」と呼 ぶ.
最大水位 (T.P.)	T.P. を基準面とし測定した最大の水位.	認識論的 不確定性	現象に関する知見が不十分または不完全で あるため、専門家の間でも意見が対立する など その現象を完全にモデル化できな
最大水位 上昇量	最大水位 (T.P.) から地震発生によるその地 点での地盤変動量を差し引いた相対的な水 位の上昇量.		いことに起因する不確定性.現象に関する 科学的知見が増え理解が進めば,偶然的不 確定性として扱うことができる可能性が
最大水位 上昇量分 布図	海岸線に沿って定義された複数のハザード 評価点における,最大水位上昇量の分布図.		ある.本研究資料(第一部本編)の津波ハ ザード評価の枠組みにおいては,震源域 パターンに与える一部の重み(相対的な起
σ 計算誤差	真の波源断層モデルを用いて計算した場合 でも必ず生じる海岸での津波高さの計算誤 差.確率論的津波ハザード評価では,偶然 的ばらつきとして表現する.詳細は5章を 参照のこと.		こりやすさ)を認識論的不確定性 (epistemic uncertainty) として扱う.認識論的不確定性 を考慮するということは、手続き的には、 複数のハザードカーブ群が計算されること に等しい.
地 震 パ ターン	波源断層モデルの組合せパターン.波源断 層モデルは断層すべり不均質が指定された ものとして定義されていることに注意.な	波源域	津波が発生した領域,すなわち,地震津波 の原因となる海底の隆起や沈降を起こした 領域.
承迟 社	お,地震調査委員会 (2020) ではこのような 表現は用いられていない.	波源断層 モデル	特性化波源断層モデルを意味する省略形の 用語.特に,断層面の位置・形状が与えら れ 断層すべりの不均質性が指定された場
	地震によって破壊された領域、本研究資料 (第一部本編)の確率論的津波ハザード評価 では、長期評価(地震調査委員会、2013)に おいて南海トラフから沈み込んだフィリピ ン海プレート上面に設定された18個の地 震発生領域要素を最小分割単位とし、隣合		合に、「波源断層モデル」と呼ぶ. なお、本 研究資料(第一部本編)では、震源域すなわ ち断層面の位置・形状のみが指定された状 態のものは、波源断層モデルと呼ばないこ とに注意.
	う地震発生領域要素の任意の組合せによっ て,任意の震源域を表現する.詳細は6章	ハザード 評価点	津波ハザードを評価する汀線メッシュ.
震源域パ ターン	を今照のこと。 震源域の組合せパターン.なお地震調査委 員会(2020)では、「震源域の組合せのパター ン」と呼んでいることに注意.	ハザード 評価標本 点	本研究資料(第一部本編)では、ハザード評価点が数十万点存在するため、ハザード評価点の中から概ね一定の間隔で選別したハ ザード評価点を、ハザード評価標本点として定義し、ハザードカーブを例示する.

1章の参考文献

- Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., and Shuto, N. (2007) : Logic-tree approach for probabilistic tsunami hazard analysis and its applicatios to the Japanese coasts, Pure and Applied Geophysics, 164, 577-592.
- 2)藤原広行・平田賢治・中村洋光・長田正樹・森 川信之・河合伸一・大角恒雄・青井真・松山尚典・ 遠山信彦・鬼頭直・村嶋陽一・村田泰洋・井上 拓也・齊藤龍・秋山伸一・是永眞理子・阿部雄太・ 橋本紀彦(2015):日本海溝に発生する地震によ る確率論的津波ハザード評価の手法の検討.防 災科学技術研究所研究資料第400号, pp.1-190.
- Geist, E., and Parsons, T. (2006) : Probabilistic analysis of tsunami hazards, Natural Hazards, 37, 277-314.
- 4) 岩淵洋子・杉野英治・蛯沢勝三 (2014): 確率論 的手法に基づく基準津波策定手引き,原子力安 全基盤機構,1-134.
- 5) 地震調査推進研究本部地震調査委員会(2013): 南海トラフの地震活動の長期評価(第二版)につ いて, https://www.jishin.go.jp/main/chousa/13may _nankai/index.htm.
- 6) 地震調査推進研究本部地震調査委員会(2014):
 全国地震動予測地図 2014 年版~全国の地震動を 概 観 し て ~, https://www.jishin.go.jp/evaluation/ seismic_hazard_map/shm_report/shm_report_2014/
- 1) 地震調査推進研究本部地震調査委員会(2017): 波源断層を特性化した津波の予測手法(津波レシ ピ), https://www.jishin.go.jp/main/tsunami/17jan_ tsunami-recipe.pdf.
- 8) 地震調査推進研究本部地震調査委員会(2020): 南海トラフ沿いで発生する大地震の確率論的 津 波 評 価. https://www.jishin.go.jp/evaluation/ tsunami_evaluation/#nankai_t
- 9) 杉野英治・是永眞理子・坂上正治・海老沢勝三
 (2011):南海トラフの地震発生の連動性を考慮
 した確率論的津波ハザード評価,土木学会論文
 集 B2(海岸工学),67-2,I_306-I_310.
- 10) 土木学会原子力土木委員会津波評価小委員会
 (2016):原子力発電所の津波評価技術 2016, http://committees.jsce.or.jp/ceofnp/node/84

11) 土木学会原子力土木委員会津波評価部会(2009):
 確率論的津波ハザード解析の方法, 1-145.
 http://committees.jsce.or.jp/ceofnp/node/39

2. 確率論的津波ハザード評価手法のレビュー

2.1 確率論的地震ハザード評価手法

本節では、地震調査研究推進本部地震調査委員会 (以下、地震調査委員会と呼ぶ)による地震の確率論 的ハザード評価の手法について説明する.

地震調査委員会は「確率論的地震動予測地図」を作 成する過程で確率論的地震ハザード評価の手法を議 論してきた(地震調査委員会,2014).日本国内には 多くの活断層や海域で発生する大地震のほか,どこ で起きるか特定しにくい地震もあり,これらの地震 によって生じる強い揺れ(強震動)に見舞われる危険 性は全国どこにでもある.確率論的地震動予測地図 作成における確率論的地震ハザード評価は,ある地 点において将来発生する地震動の強さ,評価期間, ある地震動強さを超える確率の3つの関係を評価す るものである.そして,3つのうち2つを固定し, 残る1つを求め,その空間的分布を地図上に表現し たものが確率論的地震動予測地図となる.

確率論的地震ハザード評価は不確定性の存在を前 提として地震動を評価している.不確定性は,偶然 的不確定性(aleatory uncertainty)と認識論的不確定性 (epistemic uncertainty)の2つに大別される.偶然的 不確定性は,現象固有のランダム性(偶然性)による もので,極めて精緻な予測モデルを用いてもそれ以 上減じることができないという性質といえる.一方, 認識論的不確定性は,現象に関する知識の不足によ るもので,より優れた予測モデルが将来得られれば 減じることが期待される.確率論的地震ハザード評 価において,研究者間の意見の相違は認識論的不確 定性に分類され,予測すべき現象のモデル化やその ハザード評価プロセスに含まれる不確定性等を表現 している.

以下に,「確率論的地震動予測地図 2014 年版」(地 震調査委員会, 2014)における確率論的地震ハザー ド評価の全体的な流れを説明する.具体的には,① 地震の発生可能性の評価,②震源モデルの設定,③ 地下構造モデルの設定,④強震動の評価,⑤ハザー ドカーブの作成という手順を踏む(図 2.1-1).

① 地震の発生可能性の評価

活断層調査や過去の地震発生記録および研究成果 等に基づいて、どこでどのような地震が発生するか 想定する.想定する各地震の発生確率は、基本的に 地震調査委員会の長期評価を参考にして設定する

図2.1-1 確率論的地震ハザード評価の流れ

(例えば,地震調査委員会,2011;地震調査委員会, 2013).長期評価がなされていない地震については, 地震が発生する地域の過去の地震活動の規模別頻度 分布から,規模別の確率モデルを作成して設定する. 発生確率のモデルとしては,発生確率が時間の経過 に対して一定である定常ポアソン過程と,前回の地 震発生からの経過時間によって発生確率が変化する 更新過程がある.更新過程の場合,ハザード評価を 行う基準日の設定により,発生確率が変化すること となる.発生する地震の規模のばらつきや手法その ものに含まれる誤差は,現状では予測不可能と考え られる不確定性である.適当な確率モデルを適用し てばらつきを与えることで,最終的に作成されるハ ザードカーブにおいてその誤差を表現できる.

② 震源モデルの設定

地震動の強さは、一般的に地震規模が大きいほど、 また震源断層に近いほど大きくなる.強震動の評価 を行うために、①で想定したすべての地震に対し、 長期評価に基づいて、震源となる断層面の位置形状、 地震規模等のモデルを設定する.長期評価がなされ ていない規模の小さい地震については、評価領域の 特徴に応じて一様に震源を設定する.

③地下構造モデルの設定

地震動の強さは,一般的に伝播する距離とともに 減衰するが,地下浅部の速度構造の影響により大き く変化する.そこで,震源から地震基盤までの広域 的な速度構造モデル,地震基盤から工学的基盤まで の深部地盤構造モデル,さらに強震動評価に最も影 響の強い地表付近の浅部地盤構造モデルを作成し, それらのモデルを用いて強震動を評価する. 研究資料第 439 号 第一部 本編

2.1 確率論的地震ハザード評価手法

④ 強震動の評価

地表の揺れの推定は2段階の計算で行う.まず, 評価対象領域の工学的基盤上面での揺れを推定し, 次に③で得られた浅い地盤構造の影響を加えて地表 の揺れの強さを算出する.「確率論的地震動予測地 図 2014 年版」(地震調査委員会, 2014)では,工学的 基盤での揺れの推定において,経験的に得られた距 離減衰式によって推定する方法を用いている. ⑤ ハザードカーブの作成

各地震による強震動の推定には,地震発生位置や 震源メカニズムの不確定性や距離減衰式の誤差,地 下構造モデルの誤差など,様々な不確かさが内在し ている.これらの不確定性は偶然的不確定性として 考慮する.個々の強震動予測結果から確率分布へ変 換し,得られた確率分布に①で設定した発生確率を 反映することで,個々の地震について強震動の超過 確率分布が得られる.最後に,すべての地震の影響 を統合した超過確率を計算し,対象地点のハザード カーブを作成する.

以上の手順に基づいて,各評価地点においてハ ザードカーブを計算する.「確率論的地震動予測地 図 2014 年版」(地震調査委員会,2014)はこのハザー ドカーブから,例えば「今後 30 年の超過確率が 6% となる地震動強さ」や「今後 50 年間に震度 6 弱以上 となる確率」などを分布図として作成している.詳 細は防災科学技術研究所の「J-SHIS 地震ハザードス テーション」(http://www.j-shis.bosai.go.jp)を参照さ れたい.

2.2 確率論的津波ハザード評価手法

本節では、津波の確率論的ハザード評価の手法に ついて、既往研究に基づいてレビューする.

2.2.1 確率論的津波ハザード評価の概要

日本国内における確率論的津波ハザード評価手法 の既往研究の一例として,以下の研究が挙げられる.

- 土木学会原子力土木委員会津波評価部会(2011)
- ・ 杉野ほか(2015)
- ・藤原ほか(2015)
- 土木学会原子力土木委員会津波評価小委員会
 (2016)
- 地震調査委員会(2020)

土木学会原子力土木委員会津波評価部会(2011) (以下,土木学会(2011)と呼ぶ)は原子力発電所にお ける津波ハザードを具体的に評価する場合に活用さ れることを目的とし,確率論に立脚した津波ハザー ド評価手法を取りまとめている.「平成21年まで に検討された中間的なまとめであり,東北地震津波 を踏まえた津波想定とはなっていない」との記載が あり,東北地方太平洋沖地震の知見は反映されてい ない.土木学会原子力土木委員会津波評価小委員会 (2016)(以下,土木学会(2016)と呼ぶ)は東北地方太 平洋沖地震の知見を踏まえ,土木学会(2011)の手法 を高度化したものである.

杉野ほか (2015) は東北地方太平洋沖地震で発生 した津波による福島第一原子力発電所事故を教訓と し,確率論的津波ハザード評価手法の高度化を目的 として,岩渕ほか (2014)の評価手法をもとに,杉野 ほか (2014)の特性化波源モデルを適用した津波想定 方法を提案している.

藤原ほか (2015) は広域的な確率論的津波ハザード 情報 (超過確率,海岸の最大水位上昇量等)を提供す ることを目的として,地震調査委員会 (2011) による 「三陸沖から房総沖にかけての地震活動の長期評価 (第二版)」および地震調査委員会 (2014) による「全国 地震動予測地図 2014 年版」を踏まえた,日本海溝沿 いの沈み込み帯の地震に対する確率論的津波ハザー ド評価方法を提案している.

地震調査委員会 (2020) は南海トラフに沿いの沈み 込みプレート境界で発生する多様な地震に対する津 波の評価を行うため,地震調査委員会 (2013) による 「南海トラフの地震活動の長期評価(第二版)」および 地震調査委員会(2017)による「波源断層を特性化し た津波の予測手法(津波レシピ)」に基づき,南海ト ラフ沿いで発生する大地震に対する確率論的津波ハ ザード評価を実施している.対象とする地震規模は *M*_w7.6~9.0であり,最大クラス(南海トラフの地震活 動の長期評価(第二版)(地震調査委員会,2013)で設 定された南海トラフ沿いおよび日向灘沿いの地震発 生領域が全域にわたり同時に破壊した場合)の地震 は評価の対象外としている.

藤原ほか(2015)の手法は,基本的に確率論的地震 ハザード評価手法を踏襲しており,地震調査委員会 による地震活動の長期評価(例えば地震調査委員会, 2011;地震調査委員会,2013)に基づき,地震群と その発生確率を設定し,津波高さを評価している.

既往研究における確率論的津波ハザード評価の全体の流れを図2.2.1-1に示す.以下に,①地震の発生可能性の評価,②波源断層モデルの設定,③海底・陸域地形のモデル化,④津波高さの評価,⑤ハザードカーブの作成の各ステップについて説明する.

図 2.2.1-1 確率論的津波ハザード評価の流れ

① 地震の発生可能性の評価

確率論的地震ハザード評価手法(2.1節)と同様に, どこでどのような地震が発生するか想定する.

津波の発生要因は,地震のみならず,海底での地 すべり,斜面崩壊,火山活動,隕石の影響などが挙 げられるが,ここでは,地震によって生じる津波を 対象とする.

杉野ほか(2015),藤原ほか(2015),土木学会(2016) および地震調査委員会(2020)では,海域で発生す る地震を対象に,主に地震調査委員会の長期評価 (例えば,地震調査委員会,2011;地震調査委員会, 2013)を参考に,地震の発生可能性を評価している. ② 波源断層モデルの設定

津波の規模は、一般的に、地震規模が大きいほど、 また震源域に近いほど大きくなる.ここでは津波の 評価を行うために、地震調査委員会による長期評価 (例えば、地震調査委員会、2011;地震調査委員会、 2013)に基づいて津波の波源となる断層面の位置・ 形状、地震規模等を設定する.

近年では、断層面のすべり量を一様に設定した矩 形断層モデルのみならず、東北地方太平洋沖地震の 知見を踏まえ、すべり量の不均質性を考慮した矩形 断層モデルも多く用いられている.土木学会(2011) では前者、杉野ほか(2015)、藤原ほか(2015)および 地震調査委員会(2020)では後者、土木学会(2016)で は両方が用いられている.

③ 海底・陸域地形のモデル化

確率論的津波ハザード評価では,海底および陸地 の地形をメッシュデータとしてモデル化し,有限差 分法などを用いて決定論的な津波高さが計算される. これは,津波は海底地形の影響を強く受けるため, 地震動の場合とは異なり,距離減衰式などの簡易的 手法によって推定することが難しいためである.メッ シュのサイズは要求される精度に応じて決定する.

杉野ほか(2015),藤原ほか(2015),土木学会(2016) および地震調査委員会(2020)では、海底および陸地 の地形データとしてメッシュデータを用いている. ④ 津波高さの評価

津波ハザードを表す指標としては,沖合または海 岸の津波高さや流速・波力,陸地での津波の遡上域 や浸水深,さらに津波到達時間などがある.

土木学会(2011)では,評価サイト前面での最大水 位上昇量を用いた確率論的津波ハザード評価を行っ ている. 杉野ほか(2015)では,海岸の構造物の影響 が小さくなる水深150mの沖合における相対最大水 位上昇量を用いた確率論的津波ハザード評価を行っ ている.藤原ほか(2015)および地震調査委員会(2020) では,陸域側から追跡して最初に水面下(メッシュ の標高がT.P.±0m以下)となる50mメッシュ(「汀線 メッシュ」と呼んでいる)における最大水位上昇量を 用いた確率論的津波ハザード評価を行っている.

津波高さの評価の一例として,藤原ほか(2015)に よる津波伝播遡上計算の概念図を図2.2.1-2に示す. まず,海底の地盤変動量を算出する.波長が水深に 比べて十分に大きい場合,津波は長波で近似できる

図 2.2.1-2 津波伝播遡上計算の概念図.藤原ほか(2015) を修正

ことを踏まえ,地盤変動量を津波の初期水位と仮定 し,地形データを用いて津波の伝播遡上計算を行う.

津波波力や陸域の遡上を正確に推定するために は、3次元流体解析のような計算負荷の非常に高い 数値計算が必要になる.これらを指標とした確率論 的津波ハザード評価は現在一部で基礎的研究として 行われているが、一般的な評価方法とはなっていな い、最大水位上昇量以外の指標の必要性については 今後検討される必要がある.

⑤ ハザードカーブの作成

ある評価地点における津波高さの推定には,地震 の発生位置や震源メカニズムの不確かさや津波伝播 遡上計算の再現誤差など,様々な不確定性が内在し ている.これらの不確定性の要因は先述した認識論 的不確定性と偶然的不確定性に分類される.不確定 性の扱い方は 2.2.7 項で述べる.

確率論的地震ハザード評価と同様に,個々の津波 伝播遡上計算結果と①で設定した地震の発生確率を 組み合わせることで個々の地震について最大津波高 さの超過確率分布が得られる.最後に,最大津波高 さの超過確率分布をすべての地震について確率論的 に統合し評価地点のハザードカーブが計算される.

2.2.2 波源断層モデル設定の考え方

本項では,国と地方自治体の津波浸水予測におけ る波源断層モデルの設定について,公表資料や検討 事例を整理する.

まず,国の動向として内閣府,中央防災会議,お よび国土交通省の専門調査会や検討会による,海域 ごとの公表資料を表 2.2.2-1 に整理する.また,同 表に記載した各海域の想定波源断層モデルをそれぞ れ図 2.2.2-1 ~図 2.2.2-6 に示す.

対象海域	機関	地形	粗度	構造物	波源断層	地殻	計算
(対象地震)					モデル	変動量	結果
南海トラフ	中央防災会議				0		
(東海地震)	(2001)		0	0	図 2.2.2-1	0	
南海トラフ 中央防災会議					0		
(東南海・南海地震)	(2003)	0	0	0	図 2.2.2-2	0	0
南海トラフ	中間広(2015)	0	0	0	0	0	0
(南海トラフの巨大地震)	內阁府(2013)				図 2.2.2-3		
イ白海港 ロナ海港	中央防災会議				0		
十局御 侢・ 日平御 侢	(2006)	0	0	0	図 2.2.2-4		
日本海溝	中間皮(2015)	5) -		-	0		
(東北地方太平洋沖地震)	内阁府(2015)				図 2.2.2-5	0	-
口士海市纬	国土交通省		0	0	0		
口平毋果稼	(2016)	0			図 2.2.2-6		0

表 2.2.2-1 内閣府,中央防災会議,および国土交通省による海域ごとの公表資料

図 2.2.2-1 東海地震を対象とした波源断層モデル(中央防災会議, 2001)

図 2.2.2-2 東南海・南海地震を対象とした波源断層モデル(中央防災会議, 2003)

図 2.2.2-3 南海トラフの巨大地震を対象とした波源断層モデル(内閣府, 2015)

44

40

44'

148

44

40°

148

図 2.2.2-4 千島海溝・日本海溝を対象とした波源断層モデル(中央防災会議, 2006)

図 2.2.2-5 東北地方太平洋沖地震を対象とした波源断層モデル(内閣府, 2015)

図 2.2.2-6 日本海東縁を対象とした波源断層モデル(国土交通省, 2016)

次に,地方自治体による津波に関する検討事例を 表 2.2.2-2 に示す.各自治体における想定波源断層 モデルの傾向は以下のようにまとめられる.

千島海溝一日本海溝,南海トラフに面している自 治体では,東北地方太平洋沖地震の発生以前は,そ れぞれの自治体への影響があると考えられる特定の シナリオ地震を想定し,中央防災会議(2001,2003, 2006)などが例示した地震を参考としている.その 結果,複数の自治体がほぼ同じ波源断層モデルを採 用している事例も見られた.

しかし,東北地方太平洋沖地震以後は国土交通省 (2012)に則り,各自治体における最大クラスの津波 を想定することとなり,最大クラスの津波を引き起 こす地震として,東北地方太平洋沖地震の波源断層 モデルや,内閣府の南海トラフモデル検討会におけ る最大級の津波となる波源断層モデルをもとに,各 自治体における津波が最大級となる波源断層モデル を採用するといった変化が見られた.

なお,徳島県,高知県,宮崎県などのように,内 閣府(2015)の想定をもとに独自にモデルを調整して いる自治体もある.また,広島県,熊本県,大分県, 宮崎県などのように,全国地震動予測地図をもとに 独自にモデルを設定している自治体もある.

一方,日本海側の自治体および琉球海溝に面した 自治体では,自治体周辺の海底活断層について,主 に国土交通省(2016)から複数選定し,その中から, 防災上の観点から影響の大きい断層系を選択,調整 して津波の推定を行っている.

波源断層モデルのパラメータのうち,すべり分布 の表現様式について,2011年以前では調査した自 治体の7割以上が一様すべりモデルを採用していた が,2011年以降はすべり分布の不均質性を考慮した モデルを採用している自治体が増加していた.

断層上端の深さについて,海底面に断層が出現す ることを念頭に置いているケースが多い.

断層の傾斜角について、日本海側の場合、活断層 を想定していることから、30度、45度、60度およ び90度としているケースが多い.沈み込み帯での 地震を想定している場合には、沈み込むプレートの 形状を考慮している.

断層のすべり角について、日本海側の場合、防災 上の観点から鉛直方向の地殻変動量が大きくなる90 度としている事例が多い.沈み込み帯での地震を想 定している場合には, 沈み込むプレートの大陸側プ レートに対する相対的な沈み込み方向を考慮してい る場合が多い.

すべり量について,2011年以降に検討が行われた 事例においては,波源断層モデルの地震モーメント *M*₀もしくは,モーメントマグニチュード*M*_wを設定 した上で,それを説明できる平均すべり量としてい る事例が多い.2011年以前に検討が行われた事例に おいては,断層形状(面積)を既往の大地震の再来を 念頭に設定した上で,スケーリング則に基づいて, 面積から地震モーメント*M*₀およびモーメントマグ ニチュード*M*_wを求め,すべり量を設定している.

設定した波源断層モデルの妥当性を検証する場合,過去の津波事例における津波高さ(遡上高さ)と 津波伝播計算による推定値の差異を,相田(1977)に よる幾何平均 K,およびその対数標準偏差 κにより 評価することが多い.この検証結果は,津波推定手 法の妥当性の確認,海岸における津波増幅特性の調 整,といった目的にも利用されている.

各自治体による検討事例を概観すると,東北地方 太平洋沖地震後に実施された検討においては,最大 規模の津波を想定する傾向が見られた.一方で,日 本海側の自治体や熊本県など,活断層による津波を 想定する自治体では,波源断層モデルの設定に苦慮 している様子がうかがえる.

No.	機関	公表年	業務名・委員会など
1 1	北海送	1110	津波シミュレーションおよび被害想定調査業務
1-1	北御旭	піо	(北海道太平洋沿岸東部・中部)
1.0	小炉送	1122	津波シミュレーションおよび被害想定調査業務
1-2	北御旭	H22	(北海道日本海沿岸)
1.2	北海送	1122	平成 22 年度 津波シミュレーションおよび被害想定調査業務
1-5	5 北海道 H23		(オホーツク海沿岸)
1-4	北海道	H24	太平洋沿岸にかかわる津波浸水予測図作成業務
2-1	青森県	H24	青森県海岸津波対策検討会
2-2	青森県	H27	青森県海岸津波対策検討会(日本海)
3-1	岩手県	H16	岩手県地震・津波シミュレーションおよび被害想定調査に関する報告書
3-2	岩手県	H24	平成 23 年度 岩手県津波災害復旧方針検討業務委託
4-1	宮城県	H16	宮城県第3次地震被害想定調查
4-2	宮城県	H23	宮城県第4次地震被害想定調査
5-1	秋田県	H24	秋田県地震被害想定調査業務委託
6-1	山形県	H24	山形県津波浸水域予測図等作成業務
7-1	福島県	H19	福島県津波想定調査
11-1	茨城県	H19	茨城沿岸津波浸水想定区域調査業務委託
11-2	茨城県	H24	茨城沿岸津波浸水想定区域調査業務
12-1	千葉県	H24	東日本大震災千葉県調査検討専門委員会
13-1	東京都	H24	「首都直下地震等による東京の被害想定」報告書
13-2	東京都	H25	南海トラフ巨大地震等による東京の被害想定
14-1	神奈川県	H24	津波浸水想定検討部会
14-2	神奈川県	H27	津波浸水想定検討部会
15-1	新潟県	H24	平成 24 年度 津波浸水想定図
16-1	富山県	H24	富山県津波調査研究業務
17-1	石川県	H24	平成 23 年度 石川県津波浸水想定調査
18-1	福井県	H24	平成 23 年度福井県津波浸水想定調査業務
2.2.2	静岡県	H13	第3次地震被害想定結果
22-2	静岡県	H25	静岡県第4次地震被害想定調查 第1次報告
22-3	静岡県	H27	津波浸水想定
23-1	愛知県	H15	愛知県東海地震・東南海地震等被害予測調査報告書 – 平成 14 年度版 –
23-2	愛知県	H16	愛知県東海地震・東南海地震等被害予測調査報告書 – 平成 15 年度版 –
23-3	愛知県	H26	津波浸水想定
24-1	三重県	H24	津波避難対策検討のための基礎資料整備に関する共同研究
24-2	三重県	H27	津波防災地域づくりに関する法律に基づく津波浸水想定

表 2.2.2-2 地方自治体による津波に関する検討事例(1/2)

(注)資料名を「津波浸水想定」としたものは Web 等で公表されたものである. なお,資料番号は都道府県コード+連番とした.

No.	機関	公表年	業務名・委員会など
27-1	大阪府	H16	大和川以南津波浸水シミュレーション業務委託
27-2	大阪府	H25	津波浸水想定
28-1	兵庫県	H23	「津波防災対策の推進」
28-2	兵庫県	H25	津波浸水想定
30-1	和歌山県	H18	和歌山県地震被害想定調査
30-2	和歌山県	H25	津波浸水想定
31-1	鳥取県	H24	鳥取県津波対策検討委員会報告
32-1	島根県	H24	島根県地震被害想定調査
33-1	岡山県	H16	平成 16 年度 津波浸水予測図作成業務
33-2	岡山県	H25	津波浸水想定
34-1	広島県	H17	平成 16 年度 広島県津波浸水予測図作成業務
34-2	広島県	H24	広島県地震被害想定検討委員会
34-3	広島県	H25	広島県地震被害想定調査報告書
35-1	山口県	H24	山口県地震・津波防災対策検討委員会
35-2	山口県	H27	山口県津波浸水想定図(日本海沿岸)
36-1	徳島県	H24	徳島県津波浸水想定の公表について
37-1	香川県	H17	香川県南海地震被害想定調査
37-2	香川県	H24	香川県地震津波被害想定調査委員会
37-3	香川県	H26	香川県地震・津波被害想定調査報告書
38-1	愛媛県	H25	愛媛県地震被害想定調査
39-1	高知県	H24	南海トラフ巨大地震による震度分布・津波浸水予測
40-1	福岡県	H24	津波に関する防災アセスメント調査
41-1	佐賀県	H22	第3回地震·津波等減災対策檢討委員会資料
42-1	長崎県	H24	長崎県地域防災計画見直し検討委員会
42-2	長崎県	H26	津波浸水予測
43-1	熊本県	H24	熊本県地域熊本県防災計画検討委員会
44-1	大分県	H16	大分県津波浸水予測等業務
44-2	大分県	H24	大分県地域防災計画再検討委員会有識者会議
44-3	大分県	H26	津波浸水想定
45-1	宮崎県	H24	宮崎県防災会議地震専門部会
45-2	宮崎県	H25	津波浸水想定
46-1	鹿児島県	H25	鹿児島県地震等災害被害予測調査中間報告
47-1	沖縄県	H25	沖縄県津波被害想定調査報告書

表 2.2.2-2 地方自治体による津波に関する検討事例(2/2)

(注)資料名を「津波浸水想定」としたものは Web 等で公表されたものである. なお、資料番号は都道府県コード+連番とした.

2.2.3 地形モデルの作成

津波伝播遡上計算に用いる入力データは,数値計 算手法(2.2.4 項参照)にも依存するが,一般的には 地形データ(海域および陸域),粗度データ,構造物 データの3つで構成される.計算対象となる空間を 格子状に分割し,これらの3つの情報をその格子上 に近似して表現したものが入力データとなる.

津波伝播遡上計算では,海底地形および陸域の地 表面を再現するため,地盤高(標高および水深)を格 子化したメッシュデータを用いる.

地形データの精度は最終的な計算結果に影響を与 え、場合によっては外力条件より重要となる(高橋, 2004).格子間隔を小さくすると計算精度も向上す るが、計算負荷、データ作成の必要資源も増大し、 津波伝播遡上計算の大部分がこの地形モデルの作成 作業となることも多い.また、小さな空間格子間隔 のデータから大きな空間格子間隔のデータを作成す ることは可能であるが、逆の手順においては補間作 業が必要となる.地形データは、目的・用途に応じ た空間格子間隔を決定し、その格子間隔に応じた地 形の基礎データを収集する必要がある.

本項では、津波伝播遡上計算に用いる地形モデル の作成方法、使用データおよびデータ精度に関する 既往の研究・文献等を整理した結果について報告す る.

(1) 空間格子間隔

津波伝播遡上計算の地形データは,陸域データと 海域データで構成される.

海域の水深データは、外洋と沿岸部に分けて考え ることができる.外洋では津波の発生を計算するた め、断層面が余裕をもって設定できるように広域で の設定が要求されるが、水深が深いため津波の波長 は数 10 km ~数 100 km のオーダーであり、津波の 伝播速度も速くなることから、比較的大きな格子間 隔で十分である.それに対して、水深が浅くなり波 長が短くなる沿岸部では、津波の伝播速度も遅くな るために、局所的な地形が再現されている格子間隔 の小さい地形モデルが要求される.この計算に要求 される空間スケールの違いのため、津波の波長およ び地形条件に応じて、異なる計算格子間隔の領域を 接続して同時に計算する方法(ネスティング)が用い られることが多い. ネスティングを用いた計算では,格子間隔の異な る領域を接続すると計算誤差が蓄積する場合がある ため,空間格子間隔の選定に注意が必要である.こ れは,各領域で再現できる限界波長は格子間隔の2 倍となるため,小領域で発生した津波の短波長成分 の一部が大領域へ接続できずに小領域内部に残って しまうためである.この影響を低減するため,格子 間隔を1:3あるいは1:2の割合で小さくして領域 を結合するネスティング手法が用いられる(図2.2.3-1;後藤・佐藤, 1993).

図 2.2.3-1 空間格子間隔の異なる領域の接続 (後藤・佐藤, 1993)

なお,各計算領域を接続する際に,接続境界が陸 地と鋭角に交わる場合は,陸からの反射波がすぐ接 続境界に達し,地形条件が粗いままで得られた外側 の大領域での計算結果との差が大きく,計算が不安 定化する可能性もある.そのため,複数のテスト計 算により安定性をチェックし,領域の接続位置等を 調整するなど,不安定化を極力抑えるための作業が 行われる.

(2) 海域地形

海域の空間格子間隔の設定に関して,長谷川ほか (1987)は、一様水深の一次元水路における波の伝播 計算において、一波長に含まれる格子点数が20点 以上必要であると述べており、格子分割が津波の計 算水位に与える影響が極めて大きいことを示してい る(図 2.2.3-2).

また,一次元水路に単位振幅の正弦波を入射波と した線形長波計算を行い,空間格子間隔Δxに対す る波長Lの比L/Δx(Δxの空間分解能)と,計算時間 間隔ΔtのC.F.L.条件に対する充足度を検討した結 果,空間分解能の影響の方がはるかに大きい事を述 べ,数値散逸を回避するためには波長に対する空間

図 2.2.3-2 格子間隔による最大水位の比較 (長谷川ほか, 1987)

分解能 L / Δx を 20 以上にする必要があることを示 した. この検討は津波の伝播距離を波長の 10 倍程 度までで評価しており,より長い伝播を考える場合, さらに細かい空間分解能が必要である. 今村 (1989) はこの条件について,初期水位条件から求められる 波長での分解能として設定する必要性を指摘してい る.

以上より,以下のように定式化できる. C.F.L 条件(差分スキームの安定条件):

$$\Delta t \le \Delta x / \sqrt{2gh_{max}} \tag{2.2.3-1}$$

長谷川ほか(1987), 今村(1989)によるΔxの条件:

$$L/\Delta x = (T_0\sqrt{gh})/\Delta x \ge 20 \qquad (2.2.3-2)$$

ここで, gは重力加速度, h_{max}は最大静水深, T₀は 初期水位での津波周期, h は静水深である.

佐山ほか(1986)は、屈折の影響の大きい近海計算 域において格子間隔を800 m, 400 m, 100 m と変化 させた検討を実施し、格子幅が小さいほど水位が高 く細かな変動になることを示している(図 2.2.3-3).

今村 (1989) は深海域ならびに浅海域において,2 次元津波伝播計算を行い,計算格子間隔の違いによ る計算結果の差について検討している.結果として, 深海域においては5.4 km (2.7 km, 10.8 km との比較), 沿岸域 (海岸線まで)では 0.2 km (0.3 km, 0.6 km と の比較) での計算が望ましいとしている (図 2.2.3-4, 図 2.2.3-5). 同様に,長谷川ほか(1987)は,秋田県北部域沿岸 を対象とした,1983年日本海中部地震津波の陸域 遡上計算について,空間解像度60mと30mでの比 較計算を実施した結果,平坦で単調な地域ではこれ らの差は少ないが,地形的に複雑な地域では差異が 大きくなることを指摘している.

Goto (1983) は,沿岸の遡上計算の空間格子間隔に ついて,以下の指標を提案している.

$$\Delta x / \alpha g T^2 \le 4 \times 10^{-4} \tag{2.2.3-3}$$

ここで,*T*は津波周期,αは地形勾配である.この条件の場合,周期20分の津波で海底勾配が1/200の場合,25mの計算格子間隔で条件を満足できることになる.

また, 土木学会 (2002) は下田沖の実地形を対象 に, 伝播過程の海域における空間格子間隔が最大水 位上昇量に与える影響を実証的に検討しており, 水 深 100 m 以深では格子間隔を 800 m としても影響は ほとんど見られないが, 水深 100 m ~ 50 m では格 子間隔を 200 m 以下に, 50 m 以浅では格子間隔を 50 m 以下まで細かくする必要があるとしている (図 2.2.3-6).

海域の地形データソースについて,公的機関等で 既に整備されている情報を図 2.2.3-7,図 2.2.3-8 に 示す.

図 2.2.3-3 最大水位分布および遡上域の比較, 汀線最大水位比較(佐山ほか, 1986)

図 2.2.3-4 浅海域での海岸線近似と計算結果の比較(今村, 1989)

図 2.2.3-5 深海域での格子間隔の違いによる時間波形の比較(明治三陸大津波)(今村, 1989)

図 2.2.3-6 浸水深・伝播時間,経路および最大水位上昇量と格子間隔の関係(土木学会, 2002)

資料名	機関名:Web サイト	概要	適用	
ET0P02	米国地球物理学データセンター(National Geophysical Data Center) http://www.ngdc.noaa.gov/mgg/global/etopo2.html	2 分格子の 水深データ	外洋部	
ET0P01	米国地球物理学データセンター(National Geophysical Data Center) http://www.ngdc.noaa.gov/mgg/global/global.html	1 分格子の 水深データ	外洋部	
GEBCO	英国海洋センター(British Oceanographic Data Center) http://www.bodc.ac.uk/	1 分格子, 30 秒格子 15 秒格子の データ	外洋部	
JT0P001	JTOP001 (財)日本水路協会 http://www.mirc.jha.or.jp/products/finished/JTOP01/			
JTOP030	日本周辺海域に おける緯度経度 30 秒グリッド (第 2 版)	外洋部		
120 ¹ 48 [°] N 42 [°] N 36 [°] N 24 [°] N 18 [°] N 12 [°] N 6 [°] N 12 [°] N 12 [°] N 6 [°] N 12 [°] N 12 [°] N 12 [°] N	$\frac{1}{100} \underbrace{100}_{100} \underbrace{100}$	140°E 150°E 40°N 42°N 42°N 42°N 42°N 42°N 42°N 42°N 42	定した水深	
値を (右図) JT0P030 (第 基に ルて 作成	ェロ 〜 海洋 テータセンターJUDU 保有の測量 テータに基ついて補正したデータ 育2版): 品質管理済みの測量データや水深データセット,および新規に作成 こ,精度の高いデータを優先して統合編集.日本周辺における緯度経度 30 秒 で,基データが存在しない海域には近傍の水深データから補完した推定値を 乾に用いたデータは,2011 年 3 月 11 日に発生した東北地方太平洋沖地震以前	した等深線図の数(ゲリッドの水深デ- 挿入したデータ、オ 前の調査結果に基づ	直データを ータファイ ドデータの いている.	

図 2.2.3-7 海域に関する地形データソース(外洋部)

図 2.2.3-8 海域に関する地形データソース(沿岸部)

(3) 陸域地形

陸域における津波伝播遡上計算では,地形データ の地形近似精度が重要である.用いた地形データに より結果が左右されるため,ハザードマップなどの 利用目的に応じた地形データの作成,格子間隔の選 定が重要となる.

地方自治体によるハザードマップ作成・活用を支援することを目的とした内閣府ほか(2004)では,計 算精度に関して,計算格子間隔よりも標高データの 精度が重要であることを記述している.特に津波に よる浸水が予測される地域の陸域標高データは,浸 水深の評価のため1mより詳細な精度が必要であ り,国土地理院の1/25,000地形図から作成されてい る50mメッシュ標高データではなく,都市計画図 1/2,500を用いてデータを作成し,計算格子間隔は 12.5mを基本とすることを示している(図2.2.3-9).

50 m メッシュ標高データは、全国で整備されて いる安価な地形データであるが、津波による浸水が 懸念される沿岸部におけるデータ精度が低く、数 m オーダーの誤差を含む場合もある.一方で、すべて 12.5 m 格子間隔で計算することは多くの時間・経費 を必要とする.そのため、内閣府ほか(2004)は「国・ 県等の広域な範囲を対象に津波・浸水挙動を把握す ることが目的である場合においては、目的と対象範 囲の広さに応じて、50~100 m などの適切な格子 間隔により浸水域を把握するものとする」と提案し ている.

都市計画図 1/2,500 を利用した検討例として, 劉 ほか(2001)は, 5.5 m 格子と 50 m 格子による数値計

算の比較検討を実施している.構造物等の影響が小 さい条件で実施した場合であれば粗い格子間隔で津 波遡上を予測できるが,市街地氾濫流の流況を詳細 に調べる場合には格子間隔を細分化して家屋などの 土地利用の影響を考慮した数値計算を行うことが有 効であると示している(図 2.2.3-10).

近年では、国土地理院や国土交通省等による航空 レーザスキャナ測量(図 2.2.3-11)による精密地盤高 計測を用いた5mメッシュの数値標高モデルが整 備・公表されている. 航空レーザスキャナ測量で は、固定翼や回転翼などの航空機に搭載したレーザ スキャナから地表に向けてレーザパルスを連続的に 照射し、反射光を捕捉してその往復時間から距離を 測定する. レーザスキャナにより得られたデータか ら, 雲・空気中の塵・ビル等による乱反射等に起因 するノイズを除去した,樹木や建物・構造物等の 地物の表面における高さを計測したデータを DSM (Digital Surface Model)と呼ぶ. 対して, DEM (Digital Elevation Model) は、DSM から地物の表層面での反 射により得られたレーザスキャナデータをフィルタ リングにより除去した、地表面の高さを表したデー タである.なお、計測された点群データの精度は、 計測時の航空機の高度や調整用基準点の状況により 異なるが,水平方向に±30 cm,鉛直方向に±15 cm 程度の誤差となる.

日下部ほか (2006) は, 航空レーザスキャナ測量 データを用いた空間格子間隔の違いによる地形再現 状況や使用用途, データの収集手法について検討結 果をまとめている(**表 2.2.3-1**, **表 2.2.3-2**, **図 2.2.3-12**).

同様に、村嶋ほか(2006,2007)は、航空レーザス キャナの津波遡上計算への適応性および地形モデル の空間格子間隔の影響について検討しており、空間 格子間隔による浸水範囲の比較結果を示している. 格子間隔を小さくするにつれて、浸水面積も小さく なる傾向があり、防潮堤背後の市街地部における最 大浸水深2m以上のエリアの浸水範囲全体に占める 割合が30%(40m格子)から4%(5m格子)に大きく 減少する.これは、大きな格子間隔では津波遡上を 阻害する地形の凹凸が少ないのに対し、詳細な地形 モデルは、地形の凹凸をより正確に再現しており、 氾濫水が窪地に早めに集積することなどによるとし ている.レーザデータを用いた5~10m間隔程度 の地形モデルを用いた津波の数値計算は、市街地の 起伏,堤防,盛土の効果を表現でき,浸水範囲の予 測や堤防等の効果検証において有効であることを示 している(図2.2.3-13).また,詳細な地形モデルを 用いることにより,津波氾濫水の挙動を考慮した面 的な防護方法の効果検証が可能であり,対象地の状 況に応じて適切な格子間隔を用いた検討が必要であ ることを示している(図2.2.3-14).

国土交通省(2012)では、陸域における地形デー タ作成にあたって、航空レーザスキャナ測量の成果 等を活用することを基本とし、最小計算格子間隔は 10 m 程度より小さくすることを目安とすることが 示されている. 表 2.2.3-3 に代表的な津波の数値計算マニュアル における,地形モデルの空間格子間隔および地形 データソースについて整理した.なお,地形データ ソースに関しては,それぞれの作成時において入手 可能な地形データから設定されていることに留意さ れたい.国土地理院は,航空レーザスキャナ測量デー タ等をもとに微細で同一精度の地形データの整備に 取り組んでいる.

陸域の地形データソースについて,公的機関等で 既に整備されている情報を図 2.2.3-15 に示す.

(a) 対象計算領域

(b) 構造物の影響が小さい場合(50 m 格子)

(c) 構造物の影響が小さい場合(5.5 m 格子)

(d) 構造物の影響が大きい場合(50 m 格子)

⁽e) 構造物の影響が大きい場合(5.5 m 格子)

(f) 格子間隔の違いによる浸水深の時間的変化

図 2.2.3-11 航空レーザスキャナ測量の模式図

表 2.2.3-1	空間格子間隔と地物表現の再現程度(日下部ほか,	2006)
-----------	-------------------------	-------

メッシュ	建物	道路	浸水シミュレーションの用途
1m	低層建物も一戸単位での再現可能	街区内の幅4m道路	住民個々の避難シミュレーション
2.5m	中高層建物の再現可能である が、低層建物の一戸単位での 再現は不可能	街区を区切る幅4m~ 6m道路	街区単位での避難シミュレー ション。構造物への影響評価
5m	中高層建物の再現可能である が、街区内の低層建物は再現 できない。	街区を区切る幅6m以 上の道路	市町村単位での防災計画(街 区を基本にした被害想定が可 能)
10m	高層建物の再現は可能	街 区をつなぐ幅 15m ~の道路	県単位での防災計画(メッシュ を基本にした被害想定が可 能)
25m	建物の表現は不可	幅20m~以上の道路	被害予測
50m	建物の表現は不可	道路の再現は不可	おおまかな被害予測

表 2.2.3-2 メッシュデータの収集手法の検討(日下部ほか, 2006)

	メッシュサイズ	データ名	備考			
	500m	J-DOSS	日本海洋データセンター(JODC)のオンラインサ ービス座座標系はWGS84で提供されている。			
伝算 河上浸算 別別 選算	250m	大陸棚の海の基本 図	大陸棚の海の基本図(海上保安庁)は縮尺が 1:1000000~1:200000で整備されている。各基本 図より250mメッシュが作成可能			
箅	125m	大陸棚の海の基本 図	大陸棚の海の基本図(海上保安庁)は縮尺が 1:1000000~1:200000で整備されている。			
	50m	沿岸の海の基本図	沿岸の海の基本図(海上保安庁)は縮尺が 1:10000~1:50000で整備されている。1:50000の 基本図より50mメッシュが作成可能。			
	25m	沿岸の海の基本図	1:25000~1:10000の沿岸の海の基本図(海上保 安庁)より25mメッシュが作成可能			
河 川 遡 上 浸水 計 算	10m	深浅测量結果	特に河口付近で必要な場合には、ナローマルチ ビーム等を利用した面的な深浅測量結果を利用 することも可能			
	50m	数值地図50m	国土地理院より1/25000地形図をベースに作製 されている。			
	25m	1/25000地形図	1/25000地形図より、25mメッシュが作成可能である。			
	10m	数值地図10m	国土地理院より1/10000及び1/5000をベースに 作成されている。主に火山地域で作成されてい る。			
	5m	数值地図5m	国土地理院により航空レーザスキャナ測量によ る精密地盤高計測により求めた数値標高モデ ル。現在、関東と中部の一部エリアが公開されて いる。			
2월 4년 81	2.5m	国土基本図 都市計画図など	1/2500~1/5000の大縮尺の実測図、たいてい の市町村の都市計画区域内で整備されている。			
算	2.5m以下		特に浸水計算で必要な場合には、航空レーザス キャナ測量等を利用した面的な測量結果を利用 することも可能			

(a) 地形データおよび構造物データ

(b) 地形データのみ

図 2.2.3-12 空間格子間隔毎の地形表現(日下部ほか, 2006)

図 2.2.3-13 断面図および空間格子間隔による浸水面積比較(村嶋ほか, 2006)

図 2.2.3-14 空間格子間隔による堤防配置効果の違い(村嶋ほか, 2007)

マニュア ル (発行 年)	土木学会 原子力土 木委員会津波評価部 会「原子力発電所の 津 波 評 価 技 術 」 (2002)	内閣府等「津波・高潮ハ ザードマップマニュア ル」(2004)	(財)国土技術研究 センター「津波の 河川遡上解析の手 引き(案)」(2007)	国土交通省「津波浸水 想定の設定の手引き Ver.1.20」 (2012)
空間 格子 間隔	$\Delta x / \alpha g T^2 \le 7 \times 10^{-4}$	12. 5m	波長の1/100 河道の横断方向を 5分割以上 河川のソリトン分 裂波再現では 2m 格子で計算	∆x/ <i>a</i> g <i>T</i> ² ≤ 7×10 ⁻⁴ マニングの相度係数 n =0.03 の場合 または 10m以下
地形 データ ソース	 数値地図 (精度は十分でない ことに留意) 	 ・地形図等高線・標高値 (1:2,500 地形図など) ・数値地図 (50m格子) ・航空写真測量 	河川縦横断測量結 果(河川内)	・LIDAR (航空レーザ測量)

表 2.2.3-3 津波の数値計算マニュアルにおける地形モデルに関する記述

資料名	機関名:Web サイト	概要	適用
数値地図 50m メッシュ標 高	国土地理院 http://www.gsi.go.jp/kibanjoho/kibanjoho40027.html	1/25000 地形図 に描かれてい る等してくなわり ルデータを作 し、それから 計算によ数値 高モデル	汀近平標再にす要線の地高現留るあり付低のの性意必り
基盤地図情報 (数値標高モ デル)5m レー ザー測量	国土地理院 http://www.gsi.go.jp/kiban/index.html	データ精度は ±30cm以下	
基盤地図情報 (数値標高モ デル)5m 写真 測量	Store of the store	データ精度は ±数十 cm~1m 程度	
基盤地図情報 (数値標高モ デル)10m	禄 : 5m メッシュ DEM (航空レーザー測量)の提供地域 (2019/7 更新情報)	1/25000 地形図 の等高線に基 づくデータで あり,場所によ り数mの誤差あ り	
1/2500 地形図 (国土基本図)	地方自治体、等高線や個々の単点標高情報	1m ごとの等高 線が記載,標高 値の掲載密度 が高い	

図 2.2.3-15 陸域に関する地形データソース(沿岸部)

(4) データ補間方法

収集した水深・標高データが同一のメッシュサイ ズで規則的に配置されたデータではない場合や,等 深線上の水深・標高データなど空間的に不規則に配 置されたデータである場合がある.また,座標系に ついても,緯度経度,平面直角座標系等さまざまな 座標系のデータである場合がある.津波の数値計算 に利用可能な地形モデルとするためには,同一の座 標系に変換した上で,これらのデータを統合・補間 して規則的なメッシュデータを作成する必要があ る.地形データは二次元である上に海岸線などの複 雑な形状を有しているため,高度な補間技術が必要 となる.特に,海域と陸域の境界である汀線の形状 は補間が難しく,注意を要する.

高橋 (2002) は、地形条件により補間法を整理した うえで、仮想地形に対して各補間法を適用し、地形 条件の再現性について比較している (表 2.2.3-4、図 2.2.3-16). 表 2.2.3-4 の各補間法から再現された地 形を図 2.2.3-17 に示す. 陸を含む地形の場合、スプ ライン補間が最もよく仮想地形を再現しており、続 いてクリギング法,Natural Neighbors 補間法が比較 的良い結果となっている.島を含む地形の場合には, スプライン補間が最も元地形を再現しており,続い て逆距離加重法,Natural Neighbors 補間法が比較的 良い結果を示している.クリギング法では,島情 報が抜け落ちてほとんど海域になっている.また, Natural Neighbors 補間法はアルゴリズム上の制約か ら補間処理対象領域の端部付近での補間が行えない ため,補間処理対象領域を計算対象領域より広く設 定する必要がある.

内閣府 (2015) は不規則に配置された収集データ から三角形不規則網 (Triangulated Irregular Network; TIN)を作成し,三角形の頂点のデータの線形補間に より各格子に対して格子中心の標高を与える補間法 を用いている.村嶋ほか(2006)も同様に TIN を作成 し、メッシュデータを作成して TIN の内挿計算によ り格子中心の値を求める手法を用いている.

図 2.2.3-18 に TIN によるメッシュデータ作成の概 念図を示す.

表 2.2.3-4 補間法の分類(高橋, 2002)

補問法	入力点の考慮範囲	入力点の精度	入力点の任意性	計算負荷
スプライン補間法	Local	Exact	Deterministic	中
クリギング法	Local	Exact	Stochastic	考慮範囲に依存
逆距離荷重法 (IDW)	Local	Exact	Deterministic	小
Natural Neighbors 補間法	Local	Exact	Deterministic	小
トレンド・サーフェース解析法	Global	Approximate	Stochastic	次数に依存
最近隣法	Local	Exact	Deterministic	小

図 2.2.3-16 補間法比較に用いた仮想地形 (高橋, 2002)

図 2.2.3-17 補間法による仮想地形 (図 2.2.3-16)の 再現性比較(高橋, 2002)

図2.2.3-18 TINの概念図

(5) 粗度データ

津波が伝播し浅海域や陸域に進入すると,海底や 遡上域の底面摩擦による抵抗が無視できなくなる (今村ほか,1986;図2.2.3-19).そのため,浅海域 や陸域で使用される浅水理論(非線形長波理論)や非 線形分散波理論による解析モデルでは,海底摩擦項 を考慮しなければならない.田中ほか(1998)は波動 境界層の摩擦係数に関して検討を行い,周期が長く 水深が浅い場合,海底摩擦係数は水深によって決ま り,定常流に類似した性質を示すことを明らかにし ている.通常,津波伝播遡上計算における海底摩擦 項には,定常流の抵抗則が用いられ,海底摩擦項の 表現としては,以下に示す Manning 則をもとにした 抵抗項を用いることが一般的で,式(2.2.3-4)はx方 向,式(2.2.3-5)はy方向の海底摩擦項である.

$$\frac{gn^2}{D^{7/3}}M\sqrt{M^2+N^2} \tag{2.2.3-4}$$

$$\frac{gn^2}{D^{7/3}}N\sqrt{M^2+N^2} \tag{2.2.3-5}$$

ここで, *n* は Manning の粗度係数, *D* は全水深, *M*, *N*は*x*, *y*方向の流量フラックス, *g* は重力加速度を 表す.海域での粗度係数としては *n*=0.025 の値を用 いることが多い(首藤ほか, 2007).

正村ほか (2000) は,実用的な摩擦係数として, Manning 則を使う時に海底勾配や水深,周期の影響 も受けず,底質の等価砂粒粗度 *K*_sのみから粗度係 数 *n* を決定する次の関係式を提案している.この式 から,*K*_s=2 cm の場合,*n*=0.025 となる.

$$n = \frac{0.15K_s^{-1/6}}{\sqrt{g}} \tag{2.2.3-6}$$

図 2.2.3-19 浅水理論式における各項の大きさの比較 (今村ほか, 1986)

一方,陸域での抵抗・粗度係数の考え方としては, 土地利用状況を考慮し用途に応じた粗度係数の設定 が必要である.これまで津波・洪水の数値計算にお ける粗度係数は経験的に与えられており,その妥当 性を与える基準に課題が残されていた.河川洪水氾 濫においては,水理模型実験から密集市街地におけ る粗度係数を直接推定した福岡ほか(1994)の結果が あり,津波氾濫計算においては,経験的に用いられ ている相田(1977)の係数や,基礎的な水理実験の研 究例として Goto (1983)の結果がある.これらの過 去の研究結果を踏まえ,小谷ほか(1998)は土地利用 を6種類に分類し,それぞれ対応する粗度係数を設 定・提案している(表 2.2.3-5).

表 2.2.3-5 Manning の粗度係数の比較 (小谷ほか, 1998)

福岡 6	(1994)	相田 (1977)		後藤&首藤(1983)		本研究	
区分	推定相应	区分	等価係数	区分	推定係数	区分	設定租度
80%≥	0,1			高密度	0,11		
50~80 %	0.096	密集地域	0.07			高密度 居住区	0.080
20~50 %	0.084	やや密度 の高い 地域	0.05	中密度	0.05	中密度 居住区	0.060
0~20 %	0.056			低密度	0.03	低密度 居住区	0.040
道路	0.043	その他陸 地	0.02			森林城(果 樹園・防潮 林含ず含)	0.030
						田畑城 (荒 れ地含)	0.020
		订線付近 (防潮林 含)	0.04			海域・河川 城 (防潮林 含ず)	0.025
内閣府ほか(2004)においても、遡上計算時の土地 利用状況に応じた粗度係数を考慮することが記述さ れており、小谷ほか(1998)の設定値は国土交通省 (2012)などで用いられている.

土地利用に関する基礎データとしては,全国を対 象として国土数値情報土地利用細分メッシュデー タ(国土交通省国土政策局,2014)が整備されており, 首都圏,中部圏,近畿圏を対象として細密数値情報 (国土交通省国土地理院,2005)が整備されている(表 2.2.3-6).

表 2.2.3-6 土地利用に関する基礎データソース

対象範囲	データ名	作成·整備機関
全国	国土数值情報(土地利用)	国土交通省
三大都市圈	細密数値情報(10mメッシュ土地利用)	国土地理院
-	都府県提供メッシュデータ	各都府県

家屋を考慮した津波遡上計算手法としては,小谷 ほか(1998)の方法のように家屋を抵抗要素として 扱う抵抗モデルと,高い地盤として扱う地形モデル の考え方がある(油屋・今村(2002);図2.2.3-20).

(a) 地形モデル

(b) 抵抗モデル

図 2.2.3-20 地形モデルと抵抗モデルの概念図 (油屋・今村, 2002)

地形モデルにおいては,正方格子で複雑な土地利用 状況を近似することは難しく,数m程度の細かい 格子間隔が必要となる.

油屋・今村(2002)は津波に対する家屋の抵抗を 合成等価粗度を用いてモデル化し津波遡上計算に取 り入れ,浸水深や遡上距離がどの程度変化するのか を空間格子間隔に着目し,一定粗度モデルおよび一 様粗度モデルである従来手法と比較検討をしている (表 2.2.3-7).

表 2.2.3-7 粗度モデルにおける粗度係数の比較 (油屋・今村, 2002)

#1.407 -t- 54	租度係数 n				
тили	居住区域	その他			
(a) 合成等価粗度モデル	$n = \sqrt{n_b^2 + \frac{C_b}{2yk} \times \frac{\theta}{100 - \theta} \times D''^3}$	0.025			
(b) 一定粗度モデル (小谷ら, 1998)	0.06	0.025			
(c) 一様粗度モデル	0.025				

モデル居住区の遡上計算では,格子間隔が50m(家 屋スケールの5倍程度)よりも小さい場合には,合 成等価粗度モデルの方が最大浸水深と最大遡上距離 の精度が高く,それよりも大きな格子間隔では,従 来モデルを用いた方が精度が高いことがと示されて いる(表2.2.3-8).また,格子幅を25mとした実地 形での津波遡上計算例では,家屋と樹木の抵抗を合 成等価粗度により評価した計算結果は,従来の一定 粗度を用いた計算結果と比較すると遡上域が大きく 減少することが報告されている(図2.2.3-21). 表 2.2.3-8 粗度モデルによる最大浸水深および最大 遡上距離の評価(油屋・今村, 2002)

44 7 42	合成等価粗度		一定粗剧	度(小谷ら)	一様粗度		
格于蜎 (m)	最大 漫水深	最大 最大 夏水深 遡上距離		最大 遡上距離	最大 浸水深	成大 遡上距離	
5	Q	0	0		0		
10	0.1	. • O	0	Δ	0	Δ	
20	0	¢ .	0		0	Δ	
50	0	0 V	0		0	Δ	
100	0	×	0	0	0	Δ	
200	×	×	0	0		©:	

(a) Case-1 (津波規模・大, 居住区規模・小)

(b)	Case-2	(津波規模・大,	居住区規模・大)
	_		

** 7 45	合成領	等価粗度	一定租股	度(小谷ら)	一樣粗度	
格子唱 (m)	最大 漫水深	最大 遡上距離	最大 漫水深	最大 遡上距離	最大 浸水深	- 最大 遡上距離
5	O	0	Δ	×	Δ	×
10	0	O	Δ	×	Δ	×
20	0	0	Δ	×	Δ	×
50	0 .	O. 1	0	×		. ×
100	×	×	Ó	Δ		× .
200	×	×	0 .	 Δ 	Δ	×

図 2.2.3-21 最大浸水深分布比較(油屋・今村, 2002)

(6) 構造物データ

国土交通省(2012)では,津波の伝播過程や遡上 過程にあって地盤高より高い線的構造物(海岸堤防, 港湾・漁港施設,河川堤防,道路や鉄道盛土等)に ついて,計算格子間隔より幅が広いものは地形デー タとして表現し,計算格子間隔より幅が狭いものは、 格子辺上にて越流条件を考慮することを基本とする と示されている(図2.2.3-22).

図 2.2.3-22 津波伝播遡上計算における構造物の 取り扱いの例(国土交通省, 2012)

国土交通省(2005)では、平均地盤高から比高が 50 cm 以上のものは、モデル化する必要があるとし ている.具体的には堤防、二線堤、鉄道、主要な道 路やその他の盛土等である.

構造物条件設定の考え方としては、内閣府ほか (2004)では、水門・陸こう等の防災施設の機能状況 (閉鎖・開放)について、基本的には、津波到達時間 が短いため閉鎖が困難な場合や地震動に起因する変 形で十分に機能しない恐れがあるため、開放状態で あるとして取り扱われている.ただし、耐震性を有 し自動化された施設、常時閉鎖の施設、耐震性を有 し津波到達時間より早く閉鎖できると考えられる施 設についてはその限りではない.

また,構造物の被災条件の考え方としては,東北 地方太平洋沖地震による津波で見られたような海岸 堤防や河川堤防等の破壊事例を踏まえ,国土交通省 (2012)は最大クラス津波に対して,津波が越流し始 めた時点で「破壊する」ものとし,破壊後の形状は, 「構造物なし」と想定して設定することを基本として いる.

防波堤や堤防等の越流境界条件の取り扱いとして、後藤・佐藤(1993)は、水位がその天端高を越えた場合には、以下の本間公式を用いて単位幅当りの 越流量Qを計算している.

$$Q = 0.35H_1\sqrt{2gH_1} \qquad H_2 \le \frac{2}{3}H_1 \qquad (2.2.3-7)$$

 $Q = 0.91H_1\sqrt{2g(H_1 - H_2)}$ $H_2 > \frac{2}{3}H_1$ (2.2.3-8)

ここに, *H*₁, *H*₂は, 図 2.2.3-23 に示すように天端高 を基準とした堤前後の水深で, *H*₁ ≥ *H*₂ とする.

図 2.2.3-23 防波堤からの越流に関する模式図 (後藤・佐藤, 1993)

2.2.4 数值計算手法

津波伝播遡上計算を行うにあたり,考慮すべき現 象,費やすことができる計算資源等の条件の下で, 適切な理論,計算手法を選定することが必要となる. 本項では,既往研究で多く用いられてきた数値計算 手法について概説する.

(1) 基礎方程式

津波による波動現象は、一般的に長波理論の仮定 のもとで記述される.長波理論とは、波長に対する 水深の比が小さく、重力加速度に比べ水粒子の鉛直 加速度が小さい場合に適用される水面波の理論の総 称である.長波理論の中でも適用性に応じて様々な 理論展開が行われており、以下の4つの理論が多く 用いられている.

- · 線形長波理論
- · 線形分散波理論
- 非線形長波理論
- · 非線形分散波理論

ただし,近年では津波波力評価など波先端の詳細 検討が必要とされる分野において,長波理論の仮定 を導入せず,Navier-Stokes 方程式を VOF (Volume of Fluid)法や粒子法によって直接解くことも行われて いる.また,静水圧の仮定を導入し,Navier-Stokes 方程式を差分法で解くことによって,三次元津波 計算を実施する試みも行われている (Furumura and Saito, 2009).

ここから前述した4つの長波理論について展開を 進める.各理論における支配方程式は非回転・非圧 縮性流体の支配方程式に対して,それぞれの仮定を 適用することで導出することができる.簡単のため, 二次元 XZ 平面における Euler の運動方程式を出発 点とした場合,以下の2点の仮定によって4つの長 波理論の支配方程式が求められる.

・ 波高水深比: ε ,相対水深: $\sqrt{\sigma}$ の値

・ Euler の運動方程式に対する近似度

波高水深比 ε(津波水位変動量 / 静水深) は波の非 線形性の強さ,相対水深 √σ(静水深 / 津波波長) は 波の分散性の強さの目安とされている.以下に各理 論の支配方程式の導出手順を示す.連続の式, Euler の運動方程式は以下の通りである.

grad
$$\nu = 0$$
, $\frac{D\nu}{Dt} = \frac{1}{\rho} \operatorname{grad} p$ (2.2.4-1)

ここで, *v*は流速ベクトル, *ρ*は単位体積質量, *p*は 圧力である.

また,非回転の条件式(渦なし流れ),水表面,お よび水底の条件は次式で表せる.

$$\frac{\partial u}{\partial z} = \frac{\partial w}{\partial x} \tag{2.2.4-2}$$

$$p = 0$$
 on $z = \eta$ (2.2.4-3)

$$w = \frac{\partial \eta}{\partial t} + \frac{\partial \eta}{\partial x}$$
 on $z = \eta$ (2.2.4-4)

$$w = -u\frac{\partial h}{\partial x}$$
 on $z = -h$ (2.2.4-5)

ここで, η は水位変動, h は静水深, u, w はそれぞれ x, z 方向の流速である.

次に無次元化を考える. 左辺側の小文字変数は有 次元量,右辺側の大文字変数は無次元量を表す.

$$x = l_0 X, \qquad z = h_0 Z, \qquad t = \frac{l_0}{c_0} T$$
$$u = c_0 \frac{\eta_0}{h_0} U, \qquad w = c_0 \frac{\eta_0}{l_0} W, \qquad p = \rho g h_0 P$$
$$\eta = \eta_0 N, \qquad h = h_0 H, \qquad c_0 = \sqrt{g h_0} \qquad (2.2.4-6)$$

ここで, *l*₀ は水平方向特性長(波長), *h*₀ は鉛直方向 特性長(水深), *η*₀ は波の運動の大きさを表す特性(津 波水位), *c*₀ は波の伝播速度を表す特性(波速)であ る.

無次元パラメータとして波高水深比 $\eta_0 / h_0 \in \epsilon$,相対水深 $h_0 / l_0 \in \sqrt{\sigma}$ と表すと、アーセル数は $Ur=\epsilon/\sigma$ となる.これらの関係を用いて無次元化する と連続の式、運動方程式は次式のようになる.

$$\varepsilon \frac{\partial U}{\partial X} + \varepsilon \frac{\partial W}{\partial Z} = 0 \qquad (2.2.4-7)$$

$$\varepsilon \frac{\partial U}{\partial T} + \varepsilon^2 U \frac{\partial U}{\partial X} + \varepsilon^2 W \frac{\partial U}{\partial Z} + \frac{\partial P}{\partial X} = 0 \qquad (2.2.4-8)$$

$$\sigma \left[\varepsilon \frac{\partial W}{\partial T} + \varepsilon^2 U \frac{\partial W}{\partial X} + \varepsilon^2 W \frac{\partial W}{\partial Z} \right] + 1 + \frac{\partial P}{\partial Z} = 0$$
(2.2.4-9)

また,非回転の条件,水表面,水底の条件は次式 のようになる.

$$\varepsilon \frac{\partial U}{\partial Z} = \sigma \left[\varepsilon \frac{\partial W}{\partial X} \right] \tag{2.2.4-10}$$

$$P = 0 \quad \text{on} \quad Z = \varepsilon N \tag{2.2.4-11}$$

$$\varepsilon \frac{\partial N}{\partial T} + \varepsilon^2 U \frac{\partial N}{\partial X} = \varepsilon W$$
 on $Z = \varepsilon N$ (2.2.4-12)

$$\varepsilon U \frac{\partial H}{\partial X} + \varepsilon W = 0$$
 on $Z = -H$ (2.2.4-13)

後藤 (1984) の方法にしたがって Peregrine (1967) の式を誘導する. ≈σ≪1と仮定する.連続の式 (2.2.4-7),運動方程式 (2.2.4-8), (2.2.4-9)を鉛直方向 に積分する.連続の式 (2.2.4-7)に水表面連続の条件 (2.2.4-12),水底の条件 (2.2.4-13)を適用すると次式 のように表せる.

$$\varepsilon \frac{\partial N}{\partial T} + \varepsilon \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} U dZ = 0 \qquad (2.2.4-14)$$

鉛直方向の運動方程式 (2.2.4-9) に水表面圧力条件 (2.2.4-11) を適用すると以下の関係が得られる.

$$P = \varepsilon N - Z - \sigma \int_{\varepsilon N}^{Z} \frac{dW}{dT} dZ$$
$$\frac{dW}{dT} = \varepsilon \frac{\partial W}{\partial T} + \varepsilon^{2} U \frac{\partial W}{\partial X} + \varepsilon^{2} W \frac{\partial W}{\partial Z} \qquad (2.2.4-15)$$

上式の関係と,水表面波形連続条件 (2.2.4-12), 水底条件 (2.2.4-13) から,水平方向の運動方程式 (2.2.4-8) は以下のようになる.

$$\varepsilon \frac{\partial}{\partial T} \int_{-H}^{\varepsilon N} U dZ + \varepsilon^2 \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} U^2 dZ + \varepsilon (H + \varepsilon N) \frac{\partial N}{\partial X}$$
$$= \sigma \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} \int_{\varepsilon N}^{Z} \frac{dW}{dT} dZ dZ + \sigma \frac{\partial H}{\partial X} \int_{-H}^{\varepsilon N} \frac{dW}{dT} dZ$$
(2.2.4-16)

また,鉛直方向流速は連続の式(2.2.4-7)と水底条件(2.2.4-13)から以下のように表せる.

$$\varepsilon W = -\varepsilon \frac{\partial}{\partial X} \int_{-H}^{Z} U dZ \qquad (2.2.4-17)$$

水平方向流速 Uを断面平均流速 \overline{U} とずれ U'に分ける. このとき、非回転の条件 (2.2.4-10) から U'は σ または ε のオーダーの量であると考えられるため、 次のように仮定できる.

$$U = \overline{U} + \sigma U' \tag{2.2.4-18}$$

$$U = \overline{U} + \varepsilon U' \tag{2.2.4-19}$$

式 (2.2.4-19)の関係を式 (2.2.4-14), (2.2.4-16), (2.2.4-17)に代入すると,積分形の式が得られる.

連続の式

$$\varepsilon \frac{\partial N}{\partial T} + \varepsilon \frac{\partial}{\partial X} \left[(H + \varepsilon N) \overline{U} \right] = 0 \qquad (2.2.4-20)$$

• 水平方向の運動方程式

$$\varepsilon \frac{\partial}{\partial T} [(H + \varepsilon N)\overline{U}] + \varepsilon^{2} \frac{\partial}{\partial X} [(H + \varepsilon N)\overline{U}^{2}] + \varepsilon^{4} \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} U'^{2} dZ + \varepsilon (H + \varepsilon N) \frac{\partial N}{\partial X} = \varepsilon \frac{\partial}{\partial X} \int_{-H}^{\varepsilon N} \int_{\varepsilon N}^{Z} \frac{dW}{dT} dZ dZ + \varepsilon \frac{\partial H}{\partial X} \int_{-H}^{\varepsilon N} \frac{dW}{dT} dZ (2.2.4-21)$$

• 鉛直流速

$$\varepsilon W = -\varepsilon \frac{\partial}{\partial X} \left[(Z+H)\overline{U} \right] - \varepsilon^2 \frac{\partial}{\partial X} \int_{-H}^{Z} U' dZ \quad (2.2.4-22)$$

上式において, ε¹のオーダーまで考慮し, 有次元 化すると,

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0 \qquad (2.2.4-23)$$

$$\frac{\partial M}{\partial t} + gh\frac{\partial \eta}{\partial x} = 0 \qquad (2.2.4-24)$$

なる線形理論, *ε*² までのオーダーからは

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0 \qquad (2.2.4-25)$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left[\frac{M^2}{D} \right] + g D \frac{\partial \eta}{\partial x}$$

$$= \frac{\partial}{\partial x} \left[\frac{h^3}{3} P_1 + \frac{h^2}{2} P_2 \right] - \frac{\partial h}{\partial x} \left[\frac{h^2}{2} P_1 + h P_2 \right]$$

$$P_1 = \frac{\partial^2 \overline{u}}{\partial t \partial x}, \qquad P_2 = \frac{\partial}{\partial t} \left[\overline{u} \frac{\partial h}{\partial x} \right] \qquad (2.2.4\text{-}26)$$

なる積分された Peregrine の式が得られる.また, この式を線形化することで,以下に示す線形分散波 理論の方程式が得られる.

$$\frac{\partial M}{\partial t} + gh\frac{\partial \eta}{\partial x}$$
$$= \frac{\partial}{\partial x} \left[\frac{h^3}{3} P_1 + \frac{h^2}{2} P_2 \right] - \frac{\partial h}{\partial x} \left[\frac{h^2}{2} P_1 + h P_2 \right]$$

(2.2.4-27)

同様にアーセル数が大きい場合 (*ε*~1, *σ* ≪ 1) の展 開を示す.式 (2.2.4-14), (2.2.4-16), (2.2.4-17) に式 (2.2.4-18)の関係を代入することで以下の連続の式, 運動方程式が得られる.

連続の式

$$\frac{\partial N}{\partial T} + \frac{\partial}{\partial X} [D\overline{U}] = 0 \qquad (2.2.4-28)$$

• 水平方向の運動方程式

$$\frac{\partial}{\partial T} [D\overline{U}] + \frac{\partial}{\partial X} [D\overline{U}^{2}] + \sigma^{2} \frac{\partial}{\partial X} \int_{-H}^{N} {U'}^{2} dZ + D \frac{\partial N}{\partial X}$$
$$= \sigma \frac{\partial}{\partial X} \int_{-H}^{N} \int_{N}^{Z} \frac{dW}{dT} dZ dZ + \sigma \frac{\partial H}{\partial X} \int_{-H}^{N} \frac{dW}{dT} dZ$$
(2.2.4-29)

• 鉛直流速

$$W = -\frac{\partial}{\partial X} \left[(H+Z)\overline{U} \right] - \sigma \frac{\partial}{\partial X} \int_{-H}^{Z} U' dZ$$
(2.2.4-30)

ここで, D=H+Zであり, 全水深を表す. 水平方向の運動方程式中の定積分項は以下のように求められる.

$$\int_{-H}^{N} \frac{dW'}{dT} dZ = -\left[\frac{D^2}{2}F_1' + DF_2'\right]O(\sigma) \qquad (2.2.4-31)$$

$$\int_{-H}^{N} \int_{N}^{Z} \frac{dW}{dT} dZ \, dZ = -\left[\frac{D^{3}}{3}F_{1}' + \frac{D^{2}}{2}F_{2}'\right] O(\sigma) \quad (2.2.4-32)$$

$$F_{1}' = -\frac{\partial}{\partial t} \left(\frac{\partial \overline{U}}{\partial X} \right) + \overline{U} \frac{\partial^{2} \overline{U}}{\partial X^{2}} - \left(\frac{\partial \overline{U}}{\partial X} \right)^{2}$$
(2.2.4-33)

$$F_{2}' = \frac{\partial}{\partial t} \frac{\partial}{\partial X} \left(\overline{U} \frac{\partial H}{\partial X} \right) + \overline{U} \frac{\partial^{2}}{\partial X^{2}} - \left(\overline{U} \frac{\partial H}{\partial X} \right)$$
$$- \frac{\partial \overline{U}}{\partial X} \frac{\partial}{\partial X} \left(\overline{U} \frac{\partial H}{\partial X} \right) \qquad (2.2.4-34)$$

そのため, σ⁰のオーダーで式 (2.2.4-29) を有次元 化して書き直すと,

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0 \qquad (2.2.4-35)$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left[\frac{M^2}{D} \right] + g D \frac{\partial \eta}{\partial x} = 0 \qquad (2.2.4-36)$$

なる浅水理論, σ¹のオーダーで式 (2.2.4-29) を有次 元化して書き直すと,

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} = 0 \qquad (2.2.4-37)$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left[\frac{M^2}{D} \right] + gD \frac{\partial \eta}{\partial x}$$
$$= \frac{\partial}{\partial x} \left[\frac{D^3}{3} F_1 + \frac{D^2}{2} F_2 \right] - \frac{\partial h}{\partial x} \left[\frac{D^2}{2} F_1 + DF_2 \right]$$
(2.2.4-38)

なるアーセル数が大きい場合の非線形分散波理論の 方程式が求められる.ここで F_1, F_2 は以下の通りで ある.

$$F_1 = \frac{\partial^2 \bar{u}}{\partial t \partial x} + \bar{u} \frac{\partial^2 \bar{u}}{\partial x^2} - (\frac{\partial \bar{u}}{\partial X})^2 \qquad (2.2.4-39)$$

$$F_2 = \frac{\partial}{\partial t} \left(\bar{u} \frac{\partial h}{\partial x} \right) + \bar{u} \frac{\partial}{\partial x} \left(\bar{u} \frac{\partial h}{\partial x} \right)$$
(2.2.4-40)

以上の式展開からわかる各長波理論の主な特徴を表 2.2.4-1 にまとめる.

表 2.2.4-1 各々の長波理論の特徴

理論式	式の適用範囲	特徴
線形長波理論	深海域	近地津波で適用
線形分散波理論	深海域	遠地津波で適用
非線形長波理論	浅海域・遡上域	津波の遡上を計 算可能
非線形分散波理論	浅海域・遡上域	ソリトン分裂を 計算可能

(2) 離散化解析手法

津波の数値計算において、広く用いられている離 散化解析手法は有限差分法であるが、他にも様々な 手法が提案されている。例えば有限要素法は差分法 と同様に古くから研究が行われてきたものの(例え ば、川原ほか(1976))、境界条件の設定法、計算誤 差および演算時間などを踏まえ、有限差分法と比較 すると多用はされていない。有限体積法、境界要素 法についても大規模な津波解析事例は少ない。MAC (Marker and Cell)法、VOF 法など流体解析分野で用 いられてきた手法について、かつては演算時間の問 題から津波解析に用いられることは現実的ではな かった。しかし、コンピュータの演算性能向上に伴 い現在では、構造物に対する津波波力の検討といっ た目的で VOF 法、粒子法等が用いられる事例もあ る.表 2.2.4-2 に離散化解析手法の特徴をまとめる。

表 2.2.4-2 津波解析手法と特徴

手法	特徴
右阻羊公注	・詳細地形モデルが再現困難
有限左刀伝	・津波解析事例が豊富
	・詳細地形モデルが再現可能
右阳亜圭汁	・境界条件設定方法が困難
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	・計算誤差が大きい
	・演算時間が若干長い
有限体積法	・津波解析事例が少ない
境界要素法	・津波解析事例が少ない
VOE 计 始了计	・高精度
1 105 法,私于法	・演算時間が長い

2.2.5 津波ハザードカーブの計算

津波のハザードカーブは,着目する評価地点にお いて想定する全ての地震によって*t*年間に少なくと も1回の最大水位上昇量*H*がある値*h*を超える確率 *P*(*H* > *h*; *t*)の分布関数である.*P*(*H* > *h*; *t*)は次式で 算出される.

$$P(H > h; t) = 1 - \prod_{k} \{1 - P_{k}(H > h; t)\}$$
(2.2.5-1)

ここで, $P_k(H>h;t)$ は k 番目の地震グループによっ て t 年間に少なくとも1回最大水位上昇量が h を超 える確率である.ハザードカーブ算定の概念図を図 2.2.5-1に示す.ここで地震グループとは,後述する 地震発生のタイプ別に区分した波源断層モデルの集 合である.

図 2.2.5-1 ハザードカーブ算定の概念図

各地震グループのハザードカーブの計算方法は, 地震調査委員会によって震源を特定して評価されて いる場合と震源を特定して評価されていない場合と で異なる.震源を特定して評価されている地震グ ループでは,発生確率や発生位置・規模の情報があ る程度特定されているため,その地震グループの地 震が起こった場合の最大水位上昇量の条件付き超過 確率分布を求めて,その地震グループの地震の*t*年 間の発生確率を乗じてハザードカーブを求める.1 つの地震グループに対して多様な震源域やすべり分 布を持つ複数個の波源断層モデルを考慮している場 合には,その地震グループの中で各波源断層モデル による地震の発生を排反事象と考えて条件付き確率 を分配し,ハザードカーブの計算を行う.震源を特 定して評価されている地震グループのハザードカー ブの計算は次式によって行う.

$$P_{k}(H > h; t) = P(E_{k}; t) \sum_{l} P_{k}(M_{l}) P(H > h; M_{l})$$
(2.2.5-2)

ここで, $P(E_k; t)$ は k 番目の地震グループの地震 が t 年間に発生する確率, $P_k(M_l)$ は k 番目の地震グ ループの地震が発生した場合に l 番目の波源断層モ デルが発生する条件付き確率, $P(H > h; M_l)$ は l 番 目の波源断層モデルによる地震が発生した時に沿岸 の最大水位上昇量 H が h 以上となる確率である.

地震調査委員会によって震源を特定して評価され ていない地震グループおよび地震調査委員会による 評価がないが確率論的津波ハザード評価のために設 定した地震群について,設定した複数個の波源断層 モデルによる地震の発生は独立事象と考える.その うえで,地震規模に応じた地震発生頻度をG-R式 (Gutenberg-Richter law)から推定して,その頻度を 各波源断層モデルに分配し,それぞれのt年間の発 生確率を設定する.この場合,ハザードカーブの計 算は次式で行う.

$$P_k(H > h; t) = 1 - \prod_l \{1 - P(M_l; t) P(H > h; M_l)\}$$
(2.2.5-3)

ここで, *P*(*M_i*; *t*)は*l*番目の波源断層モデルによる 地震が*t*年間に発生する確率である.

2.2.6 発生確率の評価方法

確率論的津波ハザード評価では,地震の長期的な 発生評価に基づき,地震発生の時系列を更新過程ま たは定常ポアソン過程に従うと仮定して地震の発生 確率を評価する.更新過程は前回の事象からの経過 時間によって発生確率が変化する確率モデルであ る.更新過程の確率モデルとしては,物理的解釈が 理解しやすいことから BPT 分布 (Brownian Passage Time 分布)を採用することが妥当であると考えられ ている(地震調査委員会,2001).繰り返し発生する 固有地震は基本的に BPT 分布を用いて発生確率を 評価する.一方,定常ポアソン過程は発生確率が時 間変化しない確率モデルであり,偶発的に起こる事 象を表している.過去の活動データが乏しく BPT 分布を適用できない地震や,震源を特定しにくい地 震に対しては定常ポアソン過程が適用される.

BPT 分布の確率密度関数は次の式で表される.

$$f(t;\mu,\alpha) = \sqrt{\frac{\mu}{2\pi\alpha^2 t^3}} \exp\left\{-\frac{(t-\mu)^2}{2\mu\alpha^2 t}\right\}$$
(2.2.6-1)

ここで, *t* は経過時間であり,分布の平均はμ,分 散は (μα)² である.地震発生の時系列が BPT 分布を 用いた更新過程に従う場合,時刻 *T* から Δ*T* 年後ま でに次の地震が起こる確率は,

$$P(T,\Delta T) = \frac{\int_{T}^{T+\Delta T} f(t)dt}{\int_{T}^{\infty} f(t)dt}$$
(2.2.6-2)

である. (2.2.6-1) 式および (2.2.6-2) 式より, BPT 分 布による更新過程に地震の発生が従う場合の地震の 発生確率は,平均発生間隔μとばらつきα,経過時 間*T*,評価期間ΔTの4つの値から求められること がわかる.

定常ポアソン過程では、1年間あたりの地震発生 頻度λの逆数で表現される平均発生間隔μを用いて ΔT年間の発生確率は次の式で表される.

$$P(\Delta T) = 1 - \exp(-\Delta T/\mu)$$
 (2.2.6-3)

2.2.7 不確定性の扱い

本項では土木学会(2016)および杉野ほか(2015)に よる,確率論的津波ハザード評価における不確定性 の扱いについて述べる.

(1) 土木学会(2016)

土木学会(2016)では、不確定性を偶然的不確定 性と認識論的不確定性の2つに分け、偶然的不確定 性は確率モデルで、認識論的不確定性はロジックツ リー手法によるハザード曲線群によって考慮してい る.ロジックツリー手法では、専門家の意見を反映 させてロジックツリーの分岐毎に重み付けをする. 分岐毎に設定した重みの積から各ハザードカーブの 重みが設定される.重み付けされたハザード曲線群 から、重みが平均となるハザードカーブや、専門家 のコンセンサスがどれくらいの割合で得られるかを 表すフラクタイルハザードカーブを作成し、認識論 的不確定性を考慮する.

土木学会(2016)の確率論的津波ハザード評価手法 で認識論的不確定性に分類された不確定性は以下の 6点である.

① 地震発生領域

一般的に,過去の地震に基づき,今後発生する地 震の発生領域が設定されている.ただし,領域の設 定において,地震が発生する領域が完全に分割され ているか,あるいは連続しているかが議論となる場 合,ロジックツリーの分岐で対処する.

② マグニチュードの範囲

地震規模の不確定性を考慮するため、マグニ チュードに幅を与えている.具体的には、過去の固 有地震の地震規模を基準とし、その分布幅は0.3ま たは0.5として分岐させる.マグニチュードの範囲 はロジックツリーの分岐で対処する.

③ 断層パラメータ

津波の数値計算結果は、断層面積,深さや走向・ 傾斜角などの断層パラメータの影響を受ける. 観測 値と計算値の残差のばらつき(以下,計算誤差のば らつき)に対して断層モデルの変動によるばらつき を付与するか、断層モデルの変動を考慮して計算を 行うか、ロジックツリーの分岐で対処する.

④ 平均発生間隔

固有地震の平均発生間隔が過去の地震の発生情報 に基づいて設定される場合に,平均発生間隔の誤差 (信頼度)を考慮し, 誤差の大きさに基づいて分岐を 設定する. BPT 分布を用いた更新過程で発生確率を 求める場合には, 平均発生間隔のばらつき a も設定 する必要があり, a の値も誤差を考慮して分岐を設 定する.

⑤ 計算誤差

確率論的津波ハザード評価では、ある特定の地震 が繰り返し発生した場合に、数値計算による津波高 さの推定値が特定地点でどの程度ばらつくかを,計 算誤差の時間的なばらつきとして、確率モデルで評 価する. 土木学会(2016)では、エルゴード性を仮 定することで,既往津波の観測値と数値計算によ る最大津波高さの比の空間的なばらつきを示す相田 (1977)の指標 κ によって,計算誤差のばらつきに置 き換える考えを導入している.また、エルゴード仮 定が成立せずに時間的なばらつきが空間的なばらつ きよりも小さくなるという可能性も考慮して, κの 値は 1.25, 1.35, 1.45, 1.55 の 4 通りの分岐を用いる方 法(土木学会, 2011)と、東北地方太平洋沖地震以降 の知見を反映して 1.3, 1.4 の 2 通りの分岐を用いる 方法それぞれについて、ロジックツリーの分岐を設 定している.

⑥ばらつきの打ち切り範囲

計算誤差のばらつきは対数正規分布で表現する が、この際に分布の打ち切り範囲を設定する必要が ある. 土木学会(2016)では「打ち切りを行わない」場 合と「分布の両端1%に入る現象は実際には起こらな い」と判断し対数標準偏差の±2.3倍で打ち切る場合 の2通りを考慮し、ロジックツリーの分岐で対処し ている. なお「打ち切りを行わない」場合には実際の 計算では対数標準偏差の±10倍で打ち切っている.

また,偶然的不確定性として,以下の5つの不確 定性を挙げている.

① マグニチュード

マグニチュードの不確定性の確率モデルとして, 規模が小さく頻度が高い「背景的地震」に対しては G-R 式が用いられる.一方で,固有地震のマグニ チュードの不確かさには,認識論的不確定性②で設 定したマグニチュード範囲の中で一様分布の確率モ デルを適用する.

② 波源位置

背景的地震および固有地震は発生領域内を敷き詰 めるように,複数の波源を設定する.波源位置のば らつきには、一様分布の確率モデルを適用する. ③ 潮位

潮汐を確率過程として考慮に加え,平均潮位など を仮定して計算した結果に,潮位の確率モデルで表 現された潮汐を合成することで津波高さを推定す る.過去の潮位記録から潮位出現頻度分布を求め, 潮位の確率密度関数を作成し確率モデルとして適用 する.

④ 計算誤差

計算値と観測値の残差のばらつきは,対数正規分 布に従うものとしてモデル化する.ばらつきの大き さは,相田(1977)の指標κの値を基にして求める. ⑤ すべり分布

津波高さの推定は、一様すべりの矩形モデル、ま たは大すべり域・超大すべり域を有する不均質すべ りのモデルを用いて、津波伝播遡上計算を行う.不 均質モデルのすべり分布パターンとして、大すべり 域を移動させて設定する.

(2) 杉野ほか(2015)

杉野ほか (2015) の評価手法は,先行して実施され た土木学会 (2011) の手法を参考にしている.土木学 会 (2011) との相違点としては,

- ・地震発生領域やマグニチュード範囲、断層パラ メータは地震調査委員会の地震評価に基づいて 設定し、不確定性は考慮しない、
- ・ 地震発生時の破壊伝播の影響を考慮している,
- 固有地震のみを対象としている,
- 計算誤差のばらつきの分布は対数標準偏差の ±2.3 倍で打ち切り,不確定性は考慮しない,
- ・ 潮汐の影響は考慮しない,
- すべり不均質を考慮した特性化波源断層モデル を用いる,

などが挙げられる.認識論的不確定性はロジックツ リーの分岐によりハザード曲線群を作成することで 考慮しているが,分岐の重みは基本的に一様重みと している.

杉野ほか(2015)の確率論的津波ハザード評価で認 識論的不確定性に分類された不確定性は以下の1点 である.

① 計算誤差

正断層型地震に対しては、土木学会 (2011) に示される, 0.223, 0.300, 0.372, 0.438 の4 通りの値で分岐

させている.海溝型地震に対しては,杉野ほか(2014) の検討結果を参考にして自然対数標準偏差で 0.20, 0.25, 0.30 の 3 通りの値で分岐させている.

また,偶然的不確定性に分類された不確定性は以下の4点である.

① マグニチュード

地震調査委員会(2004,2011)に掲載された,千島 海溝から日本海溝にかけての領域区分をもとに,各 領域が最小単位となるように震源域を設定し,領域 の組合せによりマグニチュードの不確定性を考慮す る.

② 波源位置

上記のマグニチュードの不確定性と同様に,領域の組合せにより様々な震源域のパターンを作成して,波源位置の不確定性を考慮する.

③ 計算誤差

計算誤差のばらつきは対数正規分布の確率モデル で考慮し,ばらつきの大きさは相田(1977)の指標 κ を参考にしている.

すべり分布

東北地方太平洋沖型の地震の場合には,不均質す べりモデルを適用する.一様すべり,大すべり域を 有する不均質すべりモデル,これに加え超大すべり 域を有する不均質すべりモデルの3種類の不均質す べり分布を設定した上で,一様分布の確率モデルを 適用している.

以上を踏まえ,土木学会(2016)および杉野ほか (2015)の確率論的津波ハザード評価における不確定 性の分類を表 2.2.7-1 にまとめる.

	認識論的不確定性	偶然的不確定性
土木学会(2016)	 ・地震発生領域 ・マグニチュードの範囲 ・断層パラメータ ・平均発生間隔 ・計算誤差 ・ばらつきの打ち切り範囲 	 ・マグニチュード ・波源位置 ・潮位 ・計算誤差 ・すべり分布
杉野ほか(2015)	·計算誤差	 ・マグニチュード ・波源位置 ・計算誤差 ・すべり分布

表 2.2.7-1 土木学会(2016)および杉野ほか(2015)の確率論的津波ハザード評価における不確定性の分類

2.3 海外での研究事例

本節では,確率論的津波ハザード評価に関する海外での研究事例を紹介する.

確率論的津波ハザード評価の基礎研究として, Geist (2002) は数値計算を用いて断層面の不均質な すべり分布による沿岸津波高さの調査研究を行っ た. Geist (2002) は世界中の津波記録から、津波マ グニチュード M,と M,の関係を調べ、両者が簡単 な比例関係になく、津波の場合にはマグニチュード だけでなく断層パラメータの影響が強いことを示し た. そして, 確率論的津波ハザード評価を行う上で の不確定性の1つとしてすべり分布の不均質を挙 げ, すべり分布が沿岸津波高さに与える影響を調べ るパラメータスタディを行った. 津波の数値計算は 1995 年メキシコ Colima-Jalisco 地震を対象とし、線 形長波理論を用いて解いている. 地震断層のメカ ニズムは Colima-Jalisco 地震を基に固定した上で、 Herrero and Bernard (1994) によるすべり分布の波数 スペクトルモデルを用いて、ランダムに100ケース 作成している. すべり不均質による沿岸波高のばら つきの大きさは観測地点によって大きく異なり, ば らつきの大きさを示す COV (標準偏差/平均値)の 値は観測点によって2倍程度の差があった.この研 究に引き続き, Geist (2005) はアメリカ・カリフォ ルニアのカスケード沈み込み帯で、ランダムなすべ り分布による沿岸波高のばらつきの調査研究を行っ ている.

Geist and Parsons (2006) は確率論的津波ハザード 評価手法のアウトラインを提案するべく、メキシ コ・アカプルコとアメリカ・カリフォルニアのカス ケード沈み込み帯においてハザード評価のケースス タディを実施した.彼らの提案した手法は、Cornell (1968)による確率論的地震ハザード解析の手法を基 にしており、近地津波のみを対象としている.まず アカプルコでのケーススタディでは、プレート境界 面に 720 km × 60 km の地震発生域を作り、その領 域内にマグニチュード・位置・すべり分布の異なる 200 個の地震を作成し、線形長波理論を用いて数値 計算を行った. 地震のマグニチュードは, M7から M 8.5 までの範囲で G-R 則に従ってモンテカルロ手 法により地震規模モデルを作成した. 地震の発生位 置はランダムとし、すべり分布は Geist (2002) と同 様にすべり分布の波数スペクトルモデルからランダ ムに作成した.200個の地震の発生は定常ポアソン 過程に従ってランダムに発生するとし,過去の対象 地震発生域での活動履歴から発生頻度を求めた.得 られたハザードカーブは,観測によって得た沿岸波 高の超過頻度分布によく整合していた.カスケード 沈み込み帯でのケーススタディも,アカプルコの場 合と同様の手法により,M7からM9の地震を100 個作成して実施した.遠地津波の観測記録による 1 m以上の沿岸波高の頻度とハザードカーブの結果 を比較したところ,1mのレベルでは遠地津波の方 が頻度が高いことが分かった.

複数の地震を想定した統合的な確率論的津波ハ ザード 評価は Tsunami Pilot Study Working Group (2006;以下, TPSWGと呼ぶ)によって行われ た. TPSWG はアメリカ合衆国連邦緊急事態管理庁 (FEMA)による洪水保険料率マップ作成のためのガ イドラインとして,近地地震・遠地地震・海底地す べりなど様々な要因から生じる津波に対してのリス ク評価をすることを目的として、アメリカ・オレゴ ン州を対象に確率論的津波ハザード評価を実施し た. ただし、海底地すべりに関しては発生モデル の検討などが進んでいないこともあって将来導入 するとして,近地津波と遠地津波に限ったハザー ド評価を行っている. 評価手法は Geist and Parsons (2006)を基にしているが、津波の数値計算手法は 非線形長波理論を用いた10mメッシュの地形デー タでの数値計算で, 遡上も含めて計算することで 浸水評価を行っている. 近地津波の震源としては、 Geist and Parsons (2006) が設定したカスケード沈み 込み帯を震源域として、M9.1の地震を想定してい る. 遠地津波の震源については、アメリカ海洋大気 庁(NOAA)による震源データベース(FACTS)を参考 に、アラスカーアリューシャン地震、カムチャッ 力地震,千島列島地震,チリ地震などのM8.2から M 9.5 の地震を想定している. アラスカーアリュー シャン地震は震源域の区分を2つに分けるか3つに 分けるか議論が分かれるため、これは認識論的不確 定性としてロジックツリーの分岐で考慮している. 各地震の発生確率はアメリカ地質調査所(USGS)の National Seismic Hazard Mapping Program を参考にし て, 定常ポアソン過程を仮定して設定している. 陸 域も含めたすべてのメッシュでハザードカーブを作 成し、超過発生頻度が1/100または1/500となる津

波高さ(100年津波,500年津波と呼ばれる)につい ての地図を作成した.今後の検討課題として,津波 地震やカスケード沈み込み帯でのより小規模の地震 をハザード評価に加えることを挙げている.

Sørensen et al. (2012) は地中海の沿岸全域を対象 に、地中海で想定しうる地震によって発生する津波 のハザードを確率論的に評価している.地中海の場 合には、閉鎖的な海域であることから特定の地点で のハザードには特定の海域の地震の影響が強いこと を示したうえで、その海域で地震が発生した場合に 最大津波水位が出現する時間帯についても検討して いる.

Leonard et al. (2014) はカナダの沿岸 (太平洋沿岸, 大西洋沿岸,極北地方,およびハドソン湾などの内 湾を含む) における津波ハザード評価を試みている. 太平洋沿岸地方ではプレート境界での地震活動が活 発であることから主にプレート境界地震によって発 生する津波を考慮しているが,大西洋沿岸地方につ いては,プレート境界型の地震(カリブ海溝沿いの 地震) による津波, 1929 Grand Banks 地震などにみ られる大陸棚斜面での地すべりによる津波,さらに セントローレンス川沿いの地殻内で発生する大地震 による津波などを評価の対象に含めている.

以上のような研究事例を踏まえ,近年では国とし ての確率論的津波ハザード評価が諸外国で実施され ている.1例として,アメリカにおける事例を紹介 する.

アメリカ土木学会(American Society of Civil Engineers) (以下, ASCE と呼ぶ)の津波荷重・影響評 価小委員会 (Tsunami Loads and Effects Subcommittee) は「アメリカ土木学会 7 標準 (2016 年版)」(ASCE 7 standards, edition of 2016) に新たに第6章「津波荷 重 · 影響」(Tsunami Loads and Effects) を設け、津波 による構造物への影響やリスクなどを対象とした 技術基準を示している.「アメリカ土木学会 7 標準 (2016年版)」はアラスカ州、ワシントン州、オレゴ ン州、カリフォルニア州、ハワイ州に適用されてお り、近い将来にグアム、米領サモア、プエルトリコ で適用される予定である.ASCEの予算支援の下で, ワシントン大学のワーキンググループ (University of Washington Working Group, 以下 UW と呼ぶ) は沖 合の水深 100 m の地点における 2,500 年間の津波の 最大振幅を対象とした確率論的津波ハザード解析

(Probabilistic Tsunami Hazard Analysis) を行っている (UW (2017), 図 2.3-1). また, ASCE は確率論的津 波ハザード解析の結果として, アラスカ州, ワシン トン州, オレゴン州, カリフォルニア州, ハワイ州 の沿岸において想定される津波の遡上高や浸水範囲 を "ASCE Tsunami Design Geodatabase" として地図上 で公表している(図 2.3-2).

図 2.3-1 カリフォルニア州クレセント市における沖合 の津波の最大振幅を対象とした確率論的津波 ハザード解析(UW, 2017)

図 2.3-2 ASCE Tsunami Design Geodatabase (ASCE)の表示例(図はワシントン州シアトル市を示している)

研究資料第 439 号 第一部 本編 2 章の参考文献

2章の参考文献

- 油屋貴子・今村文彦(2002):合成等価粗度モデ ルを用いた津波氾濫シミュレーションの提案, 海岸工学論文集,第49巻, pp.276-280.
- 相田勇(1977):陸上に溢れる津波の数値実験— 高知県須崎および宇佐の場合,地震研究所彙報, Vol.52, pp.441-460.
- 3) American Society of Civil Engineers : ASCE Tsunami Design Geodatabase Version 2016-1.0, https://www.asce7tsunami.online/ (2019 年 12 月 15 日参照).
- 4) 防災科学技術研究所 (2011): J-SHIS 地震ハザードステーション, http://www.j-shis.bosai.go.jp/(2019年1月18日参照).
- Cornell, C. A. (1968) : Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, pp.1583-1606.
- 中央防災会議(2001):東海地震に関する専門調査会,http://www.bousai.go.jp/jishin/tokai/senmon/ index.html (2019年4月18日参照).
- 中央防災会議(2003):東南海・南海地震等に 関する専門調査会,http://www.bousai.go.jp/ kaigirep/chuobou/senmon/tounankai_nankaijishin/ index_nankai.html (2019年4月18日参照).
- 中央防災会議(2006):日本海溝・千島海溝周 辺海溝型地震に関する専門調査会,http://www. bousai.go.jp/kaigirep/chuobou/senmon/nihonkaiko_ chisimajishin/index.html (2019年4月18日参照).
- 9) 中央防災会議(2011):東北地方太平洋沖地震を 教訓とした地震・津波対策に関する専門調査会, http://www.bousai.go.jp/kaigirep/chuobou/senmon/ nihonkaiko_chisimajishin/index.html (2019 年 4 月 18 日参照).
- 10) 土木学会原子力土木委員会津波評価部会(2002): 原子力発電所の津波評価技術.
- 11) 土木学会原子力土木委員会津波評価部会(2011): 確率論的津波ハザード解析の方法.
- 12) 土木学会原子力土木委員会津波評価小委員会(2016):原子力発電所の津波評価技術 2016.
- 13)藤原広行・平田賢治・中村洋光・長田正樹・森 川信之・河合伸一・大角恒雄・青井真・松山尚典・ 遠山信彦・鬼頭直・村嶋陽一・村田泰洋・井上 拓也・斎藤龍・秋山伸一・是永眞理子・阿部雄

太・橋本紀彦(2015):日本海溝に発生する地震 による確率論的津波ハザード評価の手法の検討, 防災科学技術研究所研究資料,400,216pp.

- 14) 福岡捷二・川島幹雄・松永宜夫・前内永敏(1994):
 密集市街地の氾濫流に関する研究, 土木学会論 文集, No.491, II-27, pp.51-60.
- 15) Frumura T. and T. Saito (2009): Three dimensional simulation of tsunami generation and propagation: Application to intraplate events. Journal of Geophysical Research, 114, B02307.
- Geist, E. L. (2002): Complex earthquake rupture and local tsunamis, J.G.R., 107, B000139.
- 17) Geist, E. L. (2005): Local tsunami hazards in the Pacific Northwest from Cascadia subduction zone earthquakes, U.S. Geological Survey Professional Paper, 1661-B.
- Geist, E. L. and Parsons, T. (2006): Probabilistic analysis of tsunami hazards, Natural Hazards, 37, pp.277-314.
- 19) 原子力安全基盤機構(2012):確率論的津波評価 に基づく設計基準津波の作成に関する JNES モ デル.原子力安全・保安院 地震・津波に関する 意見聴取会 津波関係第1回配布資料.
- 20) Goto, C. (1983): Numerical simulation of Tsunami propagations and run-up, Tsunamis:Their Science and Engineering, pp 439-451.
- 21) 後藤智明(1984):アーセル数が大きい場合の非 線形分散波の方程式、土木学会論文集, Vol.351, pp.193-201.
- 22)後藤智明・佐藤一央(1993):三陸沿岸を対象とした津波数値計算システム開発,港湾技術研究 所報告,第32巻,第2号,pp.18.
- 23) 長谷川賢一・鈴木孝夫・稲垣和男・首藤伸夫 (1987):津波の数値実験における格子間隔と 時間積分間隔に関する研究,土木学会論文集第 381 号,Ⅱ-7, pp.111-120.
- 24) Herrero, A. and Bernard, P. (1994): A kinematic self-similar rupture process for earthquakes, Bull. Seismol. Soc. Am., 84, pp.1216-1228.
- 25) 今村文彦(1989):数値計算による津波予警報の 可能性に関する研究,東北大学博士学位論文.
- 26) 今村文彦・後藤智明・首藤伸夫(1986): 津波数 値予報の可能性に関する研究 - 津波数値シミュ

レーションの精度-, 東北大学工学部津波防災 実験所研究報告, 3, 23-88.

- 27) 岩渕洋子・杉野英治・蛯沢勝三 (2014): 確率論 的手法に基づく基準津波策定手引き,原子力安 全基盤機構,JNES-RE-2013-2041.
- 28) 地震調査研究推進本部地震調査委員会(2001): 長期的な地震発生確率の評価手法について.
- 29) 地震調査研究推進本部地震調査委員会(2004): 千島海溝沿いの地震活動の長期評価(第二版)に ついて.
- 30) 地震調査研究推進本部地震調査委員会(2011): 三陸沖から房総沖にかけての地震活動の長期評 価(第二版).
- 31) 地震調査研究推進本部地震調査委員会(2013): 南海トラフの地震活動の長期評価(第二版).
- 32) 地震調査研究推進本部地震調査委員会(2014): 全国地震動予測地図 2014 年版~全国の地震動ハ ザードを概観して~.
- 33) 地震調査研究推進本部地震調査委員会(2017): 波源断層を特性化した津波の予測手法(津波レシ ピ).
- 34) 地震調査研究推進本部地震調査委員会(2020): 南海トラフ沿いで発生する大地震の確率論的津 波評価.
- 35) 川原睦人・竹内則雄・首藤伸夫(1976):2 段階ラッ クス・ウエンドロフ有限要素法による潮汐流解 析, 土木学会海岸工学講演会論文集, Vol.23, pp.498-501.
- 36) 国土交通省 (2005): 浸水想定区域図作成マニュ アル.
- 37) 国土交通省 (2012): 津波浸水想定の設定の手引 き.
- 38) 国土交通省 (2016):日本海における大規模地震 に関する調査検討会,http://www.mlit.go.jp/river/ shinngikai_blog/daikibojishinchousa/ (2019 年 4 月 18 日参照).
- 39) 国土交通省国土地理院 (2005): 細密数値情報 10m メッシュ土地利用. (http://www.gsi.go.jp/ kankyochiri/lum-saimitsu.html (2019 年 1 月 21 日 参照).
- 40) 国土交通省国土政策局(2014):国土数値情報 土地利用細分メッシュデータ.(http://nlftp.mlit. go.jp/ksj/gml/datalist/KsjTmplt-L03-b.html (2019

年1月21日参照).

- 41)小谷美佐・今村文彦・首藤伸夫(1998):GIS を
 利用した津波遡上計算と被害想定手法,海岸工
 学論文集,第45巻,pp.356-360.
- 42) Leonard, L.J., G. C. Rogers, and S. Mazzotti (2014):Tsunami hazard assessment of Canada. Nat. Hazards, 70, 237–274.
- 43) 日下部毅明・渋谷研一・片岡正次郎(2006):津 波による道路施設の被災度と経済的損失の評価 手法に関する現況等の調査と基礎的検討,国総 研資料,第316号, pp.114-15.
- 44) 正村憲史・藤間功司・後藤智明・重村利幸(2000): 底面境界層の構造を考慮した長波理論解と海底 摩擦による波高減衰に関する考察,土木学会論 文集, No.663, Ⅱ-53, pp.69-78.
- 45) 村嶋陽一・今村文彦・竹内仁・鈴木崇之・山崎正幸・ 松田健也(2006):津波浸水予測における航空機 搭載型レーザーデータの適応性,海岸工学論文 集,第53巻,pp1336-1340.
- 46) 村嶋陽一・今村文彦・越村俊一・中村茂・北沢 良之・並川和敬(2007):津波防災施設計画への 高精度地形モデルの利用と必要精度,海岸工学 論文集,第54巻, pp.1371-1375.
- 47) 内閣府(2015): 南海トラフの巨大地震モデル検 討会, http://www.bousai.go.jp/jishin/nankai/model/ index.html (2019 年 4 月 18 日参照).
- 48) 内閣府・農林水産省・水産庁・国土交通省(2004):津波・高潮ハザードマップマニュアル.
- 49) Peregrin, D.H. (1967) : Long waves on a beach, J.F.M., Vol.27, Part4.
- 50) 劉暁東・堺茂樹・小原忠和・三上勉・岩間俊二・ 今村文彦・首藤伸夫(2001):市街地への津波遡 上・氾濫に関する数値解析,海岸工学論文集, 第48巻, pp. 341-345.
- 51) 佐山順二・後藤智明・首藤伸夫(1986):屈折に 関する津波数値計算の誤差,海岸工学論文集, 第 33 巻, pp. 204-208.
- 52) 首藤伸夫・今村文彦・越村俊一・佐竹健治・松 冨英夫(2007): 津波の事典, 朝倉書店, 350pp.
- 53) Sørensen, M. B., M. Spada, A. Babeyko, S. Wiemer, and G. Grünthal (2012): Probabilistic tsunami hazard in the Mediterranean Sea. J. Geophys. Res.,117, B01305.

研究資料第 439 号 第一部 本編 2 章の参考文献

- 54) 杉野英治・岩渕洋子・橋本紀彦・松末和之・蛯 澤勝三・亀田弘行・今村文彦(2014): プレー ト間地震による津波の特性化波源モデルの提 案,日本地震工学会論文集,第14巻,第5号, pp.1-18.
- 55) 杉野英治・岩渕洋子・阿部雄太・今村文彦 (2015): 確率論的津波ハザード評価における津波想定の 影響,日本地震工学会論文集,第15巻,第4号, pp.40-61.
- 56) 高橋智幸(2002):津波の解析技術一南海地震津 波を例として一,土木学会海岸工学委員会・水 理委員会,水工学シリーズ 02-B-5.
- 57) 高橋智幸(2004): 津波防災における数値計算の 利用,日本流体力学会数値流体力学部門 Web 会 誌,第12巻第2号, pp.23-32.
- 58) 田中仁・アーマドサナ・川村育男(1998): 波動 境界層の準定常性に関する理論および実験.土 木学会論文集. 593/11-43, 155-164.
- 59) Tsunami Pilot Study Working Group (2006) : Seaside, Oregon Tsunami Pilot Study -Modernization of FEMA Flood Hazard Maps, USGS Open-File Report 2006-1234.
- 60) University of Washington Working Group (2017): Probabilistic Tsunami Design Maps for the ASCE 7-16 Standard, https://doi. org/10.1061/9780784480748.001. (2019 年 12 月 15 日参照)

3. 地震活動に関するデータ

本章では、日本周辺における地震活動と、地震に 伴う津波に関するデータから、津波の発生の程度、 規模別分布などを整理する.整理にあたっては、以 下のカタログを参照した.

地震に関するカタログ

- S-1) 気象庁による地震月報(カタログ編) (1923 年~1996 年に海域で発生した地震)
- 津波に関するカタログ
- T-1) 渡辺(1998)による「日本被害津波総覧(第2版)」
 (684年~1996年に日本およびその周辺で発生した津波)
- T-2) 阿部による「日本付近に発生した津波の規模 (1498年-2006年)」

図 3-1 地震月報(気象庁)に記載された 1923 年から 1996 年に海域で発生した M_J 5.5 以上の地震の震央分布

図 3-2 「日本被害津波総覧(第2版)」(渡辺, 1998)に記載の 1923 年から 1996 年に海域で発生した地震の震央分布

山市日村	度数			津波規	模階級別の 対象	の度数		
地辰况候	(地底月報)			(口平1	阪古/手/Q1	心見/		1
		-1	0	1	2	3	4	小計
$5.5 \le M_J < 6.0$	2034	0	1	0	0	0	0	1
$6.0 \le M_J < 6.5$	845	12	0	0	0	0	0	12
6.5≦ <i>M</i> _J <7.0	263	36	8	2	1	0	0	47
$7.0 \le M_J < 7.5$	83	21	14	5	0	0	0	40
$7.5 \le M_J < 8.0$	19	0	3	2	3	3	0	11
8.0≦ <i>M</i> _J <8.5	7	0	0	0	4	2	0	6
8.5≦ <i>M</i> J	0	0	0	0	0	0	0	0
合計	3251	69	26	9	8	5	0	117

表 3-1 1923 年から 1996 年に日本周辺の海域で発生した地震の数

表 3-2 19	23 年から 19	396年に日本周辺の海域で発生した地震の津波発生割合
	度数	津波規模階級別の発生割合
山山市中日井		

	12.20			14 11人7501天1				
地震規模	(地震月報)		(日本被害津波総覧)					
		-1	0	1	2	3	4	小計
5.5≦ <i>M</i> _J <6.0	2034	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000	0.0005
$6.0 \le M_J < 6.5$	845	0.0142	0.0000	0.0000	0.0000	0.0000	0.0000	0.0142
$6.5 \le M_J < 7.0$	263	0.1369	0.0304	0.0076	0.0038	0.0000	0.0000	0.1787
$7.0 \le M_J < 7.5$	83	0.2530	0.1687	0.0602	0.0000	0.0000	0.0000	0.4819
7.5≦ <i>M</i> _J <8.0	19	0.0000	0.1579	0.1053	0.1579	0.1579	0.0000	0.5789
$8.0 \le M_J < 8.5$	7	0.0000	0.0000	0.0000	0.5714	0.2857	0.0000	0.8571
8.5≦ <i>M</i> J	0	—	—	-	—	—	-	—
合計	3251	0.0212	0.0080	0.0028	0.0025	0.0015	0.0000	0.0360

まず,カタログ S-1 と T-1 に基づいて,1923 年~ 1996 年に日本周辺の海域で発生した地震の地震規 模と津波発生割合について検討する.

カタログ S-1 に記載された,日本周辺の海域で発 生した $M_J 5.5$ 以上の地震の震央分布を図 3-1 に示す. 同様に,カタログ T-1 に記載された,今村・飯田の 津波規模階級 m(今村,1949; lida,1958)が定まって いる地震,すなわち,津波を発生させた地震の震央 分布を図 3-2 に示す.さらに,表 3-1 に,図 3-1 の 地震のうち,津波を発生させた地震(図 3-2 の地震) の個数をマグニチュード M_J の範囲毎に集計し,そ れに基づき 1923 年~1996 年に日本周辺の海域で発 生した地震によって津波が発生した割合を表 3-2 に まとめた.

図 3-3 下段の黒三角印をみると、M_J7以上の地 震のほぼ半数以上で津波が発生しているのに対し、 M_J7 未満の地震では津波が発生する割合は小さいこ とがわかる.また、表 3-3 から現行の「津波警報レ ベル」(津波の予想高さが1mを超え、3m以下)(気 象庁、2013)に相当するとみられる津波規模階級 m が1よりも大きな規模の津波は、概ね M_J7以上の 地震によって発生している傾向が図 3-3 から読み取 れる.

図 3-3 気象庁および渡辺(1998)に基づく海域で発生した地震(1923年~1996年)の津波を発生させた地震規模別の割合.上:津波規模階級別割合,下:累積津波規模階級別割合(津波規模階級 m がある階級以上となる割合)

次に,カタログ T-1 と T-2 に基づいて,1498 年~ 1996 年に日本付近で発生した津波に対する,地震 規模と津波規模階級の関係について検討する.

カタログ T-2 に掲載された,1498 年~2006 年に 日本周辺で発生した津波のリストに,カタログ T-1 に記載された津波規模階級 m および震源深さを追 加したものを表3-4 に示す.また,津波規模階級 m が0以上のものについて,地震規模 M_J別の度数分 布および累積比率を図3-4 に示す.なお,同図では 津波規模階級 m別に色分けして示した.同図から, M_J 6.7 以上になると m が1以上となる地震が出現し 始めることが読み取れる.

表 3-4 にはカタログ T-2 から算出した M_t - M_s の値 も記載している. 阿部 (1988) では M_t - M_s が 0.5 以上 の地震を津波地震としていることから,参考として この基準に該当する地震を表 3-4 では黄色のハッチ を掛けて示した. 図 3-4 において M_J = 6.8 で m = 4 となっている地震は,「津波地震」である 1896 年明 治三陸地震である.

表 3-3 今村・飯田の津波規模階級(「日本被害津波総覧 (第2版)」(渡辺, 1998)より転記)

規模階級(m)	津波の高さ(<i>H</i>)	被害程度
-1	50cm 以下	なし
0	1m 程度	非常にわずかの被害
1	2 " "	海岸および舟(船)の被害
2	4~6 " "	若干の内陸までの被害や人的損失
3	10~20 " "	400km 以上の海岸線に顕著な被害
4	30 ″ 以上	500km 以上の海岸線に顕著な被害

図 3-4 表 3-4 の地震のうち,津波規模階級 m が0以上の地震の度数分布および累積比率. 津波規模階級 m 別に色分けした.

年	月		時	分	北牌	東経	REGION	Mt	Mw	Ms	Mj	Mt-Ms	m	深き (km)
1498	ĝ	20					東海	8.5					3	
1596	9	1					別府湾	8						
1605	2	3					東海・南海	8.2					3	
1662	10	31					二位派	7.7					2	
1677	4	13					十時冲	7.7					2	
1677	11	4					房総沖	8				10	3	
1703	12	31					開東	8.4					3	
1707	10	28					東海・南海	8.4					4	
1741	8	29					(漢局半局)中 上時1年	8.4				· ·		
1760	8	29					てたれて	7.9					1	
1771	4	24					八重山群島	8.5					4	
1702	5	21					島原海	7.5				22	3	
1793	2	17					宫城県沖	7.6				2	2	
1804	7	10					山形・秋田県沖	7.7				-	1	
1833	12	75					山形泉冲	8.1					4	
1854	12	23					軍温	8.3					3	
1854	12	24					南海	8.3					3	
1856	8	23					十勝沖	7.6				6	2	
1894	3	22	19	23	42.5	146.0	根室沖	8.2	-	8.1	7.9	0.1	2	
1896	1	9	22	17	36.5	141.0	一 资城厚冲	7.3		7.2	6.6	0.1	2	
1897	2	20	19	50	28.1	144.0	- 石ナ)/// 宮坊県油	0.0	-	73	7.4	1/4	0	
1897	8	5	9	10	38.3	143.3	宫城厚汁	7.8		7.7	7.7	0.1	1~2	
1898	4	23	8	37	38.6	142.0	宫城県沖	6.7	1	7.4	7.2	-0.7	-1	
1899	11	25	3	43	31.9	132.0	高崎県沖	7		7.2	7.1	-0.2	-1	
1901	6	24	16	2	28.0	130.0	亞美大島沖	7.6		7.3	7.5	0.3	0	
1901	8	9	18	23	40.5	142.5	常称県東万戸	7.3		7.3	7.2	0.0	0	
1911	6	15	23	25	28.0	192.3	有林州未力州 资本大单位行	1.6	2	1.0	8	-0.5	1	100
1914	1	12	18	28	31.6	130.6	鹿児島県中部		4	6.7	7.1		1	100
1915	11	1	16	24	38.3	142.9	宫城県沖	-	-	7.6	7.5		0	
1918	9	8	2	16	45.5	152.0	ウルップ島冲	8.5		8.2	8	0.3		
1918	11	8	13	38	44.5	150 5	ウルップ風沖		19	77	77			
1923	0	2	11	24	35.9	142.0	次収集冲	0	7.0	7.2	7.3	0.2	-1	
1923	9	2	11	46	34.9	140.2	度影半島沖	7.5	-	7.7	7.3	-0.2	-1	
1927	3	7	18	27	35.5	135.2	京都府北部	-	7.2	7.6	7.3		-1	0
1927	8	6	6	12	37.9	142.1	宫城県沖	6.8	1	7.1	6.7	-0.3	-1	10
1027	8	10	4	27	34.0	142.0	房秘书岛冲	7.4		6.8	6.0	0.6	1	0
1920	3	9	12	48	41.2	142.5	- 石于朱/F - 書衣温室方沖	7.2	÷.	7.8	7.6	-0.6	-1	0
1931	11	2	19	3	32.3	132.6	宫崎県沖	7.3		7.6	7.1	-0.3	-1	40
1933	3	з	2	30	39.2	144.5	岩手県沖	8.3	8.4	8.5	8.1	-0.2	з	10
1933	6	19	6	37	.38.1	142.5	宮垣厚沖	7.1		7.3	7.1	-0.2	-1	0
1935	7	19	9	50	36.6	141.4	茨城県冲	6.6		6.5	6.9	0.1	-1	0
1935	10	18	1	40	40.0	143.7	右子県庁 専務県軍方山	50	3	72	71	-03	-1	10
1936	11	3	5	45	38.2	142.1	宮城県冲	7	2	7.2	7.5	-0.2	0	40
1938	5	23	16	18	36.7	141.6	茨城県冲	7.5	7.7	7.6	7	-0.1	0	0
1938	6	10	18	53	25.3	125.2	宫古岛北方汴			7.7	6.7		1	40
1938	11	5	17	43	37.3	142.2	福島県沖	7.6	7.8	7.7	7.5	-0.1	0	30
1938	11	2	19	50	37.3	141.7	福島県加	7.6	7.6	7.7	7.3	-01	0	30
1938	11	7	G	38	37.0	141.6	福島県沖	7.4	7.G	7	6.9	0.4	0	20
1938	11	14	7	31	37.0	141.5	福島還沖	71	-	7	6	0.1	-1	60
1938	11	22	10	14	36.7	142.1	茨城県冲	6.7	-	6.6	6.9	0.1	-1	10
1938	11	30	11	29	37.0	142.2	福島県沖	7		6.9	6.9	01	-1	20
1939	3	20	12	22	32.3	132.0	宮崎県沖 谷田県山	6.7		6.5	6.5	0.2	-1	20
1940	8	2	14	8	401	139.5	(K田県)中 橋丹主島沖	7.7	7.5	7.5	7.5	0.2	2	10
1941	11	19	1	46	32.0	132.1	宮崎県沖	7.6	-	7.8	7.2	-0.2	ĩ	0
1943	6	13	14	11	41.3	143.4	青森県東方冲	73		7.2	7.1	0.1	-1	20
1044	12	7	13	35	33.8	136.6	三重県沖	8.1	8-1	8	7.0	0.1	3	30
1945	1	13	3	38	34.7	137.1	変利県南部		6.6	6.8	6.8	-	0	0
1945	12	21	13	10	41.0	142.1	育林県東方介 綿伊生島油	8.1	81	8.2	8	.0.1	-1	20
1947	11	4	9	9	43.8	141.0	留明沖	7.3		7.1	6.7	0.2	1	0
1948	4	18	1	11	33.3	135.6	紀伊半鳥沖			7.3	7		0	0
1952	3	4	10	22	41.8	144.1	十時才	8.2	8.1	8.3	8.2	-0.1	2	0
1952	3	10	2	3	41.7	143.7	日高南東沖	7.3		71	6.8	0.2	-1	20
1953	11	26	2	48	34.0	141.7	厉能于意?? 编专油	6.0	1.9	6.1	6.2	-0.1	1	10
1958	11	7	7	58	44.3	148.5	エトロフ島沖	8.2	8.3	8.1	8.1	0.1	2	80
1959	1	22	14	10	37.5	142.2	福島県沖	6.0	-	7.1	6.8	0.2	1	40
1959	10	26	16	35	37.5	143.3	福島県沖	6.5		6.5	6.8	0.0	-1	10
1960	3	21	2	7	39.8	143.4	岩手県沖	7.5		7.7	7.2	-0.2	0	0
1960	3	23	9	23	39.4	143.7	右市県沢 出手県地	7.1	3	6.8	6.7	0.3	-1	0
1200	- A -	30	4	21		146.0	Test 1 11111		-	WHE -	10 H	W+W		00

表 3-4 1498年~1996年に日本付近で発生した津波(1/2)

注: M_t :津波マグニチュード, M_w :モーメントマグニチュード, M_s :表面波マグニチュード, M_J :気象庁マグニチュード(いずれも阿部による表による).m:津波規模階級(渡辺(1998)による). 震源の深さは渡辺(1998)による. M_t - $M_s \ge 0.5$ (阿部(1988))となる地震を津波地震として黄色で、津波規模階級mの記載がない地震を灰色で示した.

年	月		時	分	北緯	東経	REGION	Mt	Mw	Ms	Mj	Mt-Ms	m	深き (km)
1961	1	16	16	20	36.0	142.3	茨城県沖	7.2	-	6.9	6.8	0.3	-1	40
1961	1	16	21	12	36.2	142.0	茨城県沖	7.1	*	6.5	6.5	0.6	-1	20
1961	2	13	0	53	43.2	147.9	エトロフ島州	8.9	-	6.9	6.6	0.0	-1	80
1961	7	18	23	3	29.6	131.9	自利兼/T 居久島南東沖	6.9	- B	6.9	6.6	0.0	-1	60
1961	8	12	0	51	42.9	145.6	根室冲	6.8	7	7.1	7.2	-0.3	-1	80
1961	11	15	16	17	42.7	145.6	根室沖	6.9		6.8	6.9	0.1	-1	60
1962	4	12	9	52	38.0	142.8	宮城県沖	6.8	-	7.1	6.8	-0.3	0	40
1962	4	23	14	58	42.2	143.9	十勝冲	6.7	5	6.9	7	-0.2	-1	60
1963	10	12	20	26	43.9	148.9	エトロフ島沖	6.9		1	6.3	-0.1	-1	0
1963	10	20	0	53	43.0	150.0	エドリンの庁	7.0	0.0	72	67	0.5	2	26
1964	5	7	16	58	40.3	139.0	秋田県沖	7.1	7	6.6	6.9	0.5	-1	0
1064	6	16	13	1	38.4	130.2	新潟県沖	7.0	7.6	7.5	7.5	0.4	2	40
1964	7	24	17	14	45.8	153.4	千島刘島	7.2	- 2	6,8	6.4	0.4		
1964	12	11	0	11	40.4	138.9	秋田県冲	6.5		6.5	6.3	0.0	-1	40
1965	1	29	19	10	43.7	147.0	上下ロノ房川	7.3	7.3	7.3	6.0	0.0	1	30
1968	4	1	9	42	32.3	132.5	宮崎県沖	7.7	7.4	7.6	7.5	0.1	1	30
1968	5	16	9	48	40.7	143.6	青森県東方沙	8.2	8.2	8.1	7.9	0.1	2	0
1968	5	16	19	39	41.4	142.9	春森県東方沖	7.7	-	7.7	7.5	0.0	0	40
1968	G	12	22	41	39.4	143.1	岩手県沖	7.4	7.1	7.3	7.2	0.1	0	0
1969	4	12	16	19	52.2	137.1	高時里用	82		5.8	5.5	-0.1	-1	10
1909	7	26	7	41	32.1	132.0	10月月/F 宮崎県沖	71	7	6.8	6.7	0.3	-1	10
1971	8	2	16	24	41.2	143.7	日南南東汁	7.1		7.1	7	0.0	-1	60
1971	0	6	3	35	46.7	141.4	サハリン面方沖	7.5	7.3	6.9	6.9	0.6	0	0
1972	2	29	18	22	33.2	141.3	八丈島東方沖	7.4		7.4	7.1	0.0	-1	70
1972	12	4	19	16	33.2	141.1	八丈島東方沖	7.6	10	7.5	7.2	0.1	-1	50
1973	0	24	12	60	430	146.0	极至/P 相常油	8.1	7.8	7.2	7.4	0.4	1	20
1973	6	27	7	32	42.7	146.6	相掌連	6.9	-	6.5	6.5	0.4	. •	50
1974	5	9	8	33	34.6	138.8	伊豆半島汁	6.5	6.5	6.3	6.9	0.2	-1	10
1974	0	27	14	47	42.8	146.7	根室沖	7	-	6.5	6.6	0.5	-1	30
1975	6	10	22	47	42.8	148-2	色丹島冲	7.9		6.8	7	1.1	1	0
1976	1	21	19	5	43.7	149.2	エトロフ島沢	71		6.8	6.5	0.3	-1	0
1970	3	23	12	31	11.0	1/0.7	アル人気可加	7.1	7.3	7.1	6.7	0.0	-1	40
1978	3	23	12	15	44.8	149.4	エトロフ島沖	7.5	7.4	7.4	7	0.1	-1	60
1978	3	25	4	47	44.3	149.8	エトロフ島沖	7.7	7.6	7.5	7.3	0.2	-1	40
1978	6	12	17	14	38.2	142.2	宫城漂冲	7.4	7.6	7.5	7.4	-0.1	0	40
1979	2	20	15	32	40.2	143.9	岩子県沖	6.9	6.5	6.7	6.5	0.2	1	0
1980	2	23	14	20	43.5	140.0	2011日月7日 1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	6.3	6.1	6.8	6.8	0.0	-1	30
1980	1	19	3	17	38.6	143.0	京城県沖	7	7	6.9	7	0.1	-1	0
1982	3	21	11	32	42.1	142.6	日南沖	7.1	6.9	6.7	7.1	0.4	0	40
1982	7	23	23	23	36.2	142.0	<u> </u>	7	7	6.8	7	0.2	-1	30
1982	12	28	15	37	33.9	139.5	三宅島南方沖		6.2	6.1	6.4		-1	20
1983	5	26	11	59	40.4	139 1	秋田県沖	81	7.9	7.7	7.7	0.4	3	14
1905	3	24	13	43	41.5	1/19.0	青林美四万川	7.1	7.1	7	6.8	0.1	-1	40
1984	6	13	11	29	31.4	139.8	<u>烏島近海</u>	7.3	5.6	5.5	5.9	1.8	0	0
1984	8	7	4	6	32.4	132.2	宫崎県沖	6.0	6.9	6.7	7.1	0.2	1	33
1984	9	19	2	2	34.1	141.6	房総半島沖	7.3	6.8	6.9	6.6	0.4	-1	13
1986	11	15	6	20	24.0	121.8	台湾付近	7.6	7.3	7.8	7.5	-0.2	1	33
1987	2	18	12	30	32.0	141.9	治療業業の行	6.8	0.0	6.8	0.7	0.0		
1989	10	29	14	25	39.6	143.8	三陸はるか中	6.8	6.9	6.6	6.5	0.2	-1	0
1989	11	2	3	25	39.8	143.1	岩子県冲	7.5	7.2	7.4	7.1	0.1	0	0
1990	2	20	15	53	34 7	139 3	伊豆大島近海	65	62	6.4	6.5	01	-1	6
1990	9	24	6	13	33.1	138.6	東海道はるか汁	6.8	6.5	6.5	6.6	0.3	-1	60
1002	12	18	17	43	40.8	102.4	十時列助	72	6.8	6.0	68	03	0	10
1992	8	12	0	14	32.6	142.1	八丈县東方沖	7.1	6.4	6.3	6.1	0.8	-1	50
1993	2	7	22	27	37.7	137.3	能重半島沖	6.7	6.6	6.2	6.6	05	0	25
1003	7	12	22	17	42.8	130.2	北海道南西沖	8.1	7.7	7.6	7.8	0.6	3	35
1993	8	8	4	42	42.0	139.9	北海道南西沖	6.4	6.5	6.1	6.3	0.3	-1	24
1994	4	8	10	10	40.6	144.0	三種はるかか	7	6.4	6.3	6.5	0.7	-1	9
1994	C C	24	10	0	24.0	122.4	台湾行派	0.0	6.3	6.6	6.0	-0.2	-1	31
1994	10	4	22	22	43.4	147.7	北海道東方沖	8.2	8.1	8.1	8.2	0.1	2	23
1994	10	9	16	55	43.6	147.8	北海道東方沖	6.9	7.1	7.1	7	-0.2		
1994	12	28	21	19	40.5	143.7	三陸はるか沖	77	77	75	76	0.2	0	0
1995	1	17	5	46	34.6	135.0	兵庫県南部	6.4	6.8	6.8	7.3	-0.4	-1	16
1995	10	18	19	37	28.0	130.4	电关大局近岸 中兰十高场运	7.6	6.7	6.9	6.7	0.7	1	38
1005	12	4	3	1	44.5	150.3	电天八岛延序	7.6	7.6	7.9	7.2	0.3	1	57
1996	g	5	3	15	31.4	140.0	烏島近海	7.5	5.7	5.1	6.2	2.4	-1	13
1996	10	18	19	50	30.6	131.2	種子島近河	6.7	6.6	6.6	6.2	0.1	-1	40
1996	10	19	23	44	31.8	132.0	日间避	6.9	6.6	6.6	6.9	0.3	-1	39
1996	12	3	7	17	31.8	131.6	日间海	6.7	6.7	6.6	6.7	0.1	-1	43

表 3-4 1498年~1996年に日本付近で発生した津波(2/2)

注: M_t :津波マグニチュード, M_w :モーメントマグニチュード, M_s :表面波マグニチュード, M_J :気象庁マグニチュード(いずれも阿部による表による).m:津波規模階級(渡辺(1998)による). 震源の深さは渡辺(1998)による. M_t - $M_s \ge 0.5$ (阿部(1988))となる地震を津波地震として黄色で、津波規模階級mの記載がない地震を灰色で示した.

カタログ T-1 における 1926 年~ 1996 年までの 71 年間のデータについて,津波規模階級別の津波の発 生度数および累積度数を図 3-5 上段に,年頻度およ び累積年頻度を図 3-5 下段に示す.同図から津波規 模階級が -1 (津波の高さが 50 cm 以下)以上となる津 波は1年に約2回の頻度,津波階級規模が1(津波の 高さが2m程度)以上となる津波は3年に1回程度 の頻度で発生していることがわかる.

津波を伴う地震の震源深さは、岡田・谷岡(1998) によれば概ね90kmよりも浅いことが示されている (図 3-6).また、地震によって津波が発生する割合 も震源の深さが概ね50km以浅の場合に30%を超 え、規模の大きな津波も震源の深さが概ね50km以 浅の地震に集中して発生していることが読み取れ る.

3章の参考文献

- 阿部勝征(1988):津波マグニチュードによる日本付近の地震津波の定量化,東京大学地震研究 所彙報,63(3),289-303.
- 阿部勝征:日本付近に発生した津波の規模 (1498年 - 2006年), http://www.eic.eri.u-tokyo. ac.jp/tsunamiMt.html, 2019年12月5日閲覧.
- 3) Iida, K. (1958): Magnitude and energy of earthquakes accompanied by tsunami, and tsunami energy, J. Earth Sci., Nagoya Univ., 6, 101-112.
- 4) 今村明恒(1949):本邦津波年代表,地震2,2, 23-28.
- 5) 気象庁:地震月報(カタログ編), http://www. data.jma.go.jp/svd/eqev/data/bulletin/index.html, 2019年12月5日閲覧.
- (2013):津波警報が変わりました,https:// www.jma.go.jp/jma/kishou/books/tsunamikeihou/ tsunamikeihou2013.pdf,2019年12月29日閲覧.
- 7)岡田正実・谷岡勇市郎 (1998):地震の規模・深 さと津波の発生率,月刊海洋,号外 No.15,18-22.
- 8) 渡辺偉夫(1998):日本被害津波総覧(第2版), 東京大学出版会,248pp.

図 3-5 津波規模階級 m 別の津波の発生度数と年頻度. 上:度数および累積度数.下:年頻度および累 積年頻度(1926年~1996年の127事例)

図 3-6 地震の深さ別の津波発生度数(左)と発生率(右) (岡田・谷岡(1998)より抜粋)

4. 津波痕跡に関するデータ

4.1 津波痕跡に関するデータベースのレビュー

本節では、津波痕跡に関する資料を整理した、以 下4点のデータベースを紹介する.

- (1) 産業技術総合研究所地質調査総合センター(以下,産総研と呼ぶ)の「津波堆積物データベース」
- (2)東北大学災害科学国際研究所津波工学研究分野・原子力安全基盤機構(現原子力規制委員会) (以下,東北大・原子力安全基盤機構と呼ぶ)の「津波痕跡データベース」
- (3)東北地方太平洋沖地震津波合同調査グループ (以下,合同調査グループと呼ぶ)の「痕跡調査 結果」
- (4) 米国国立海洋大気庁(National Oceanic and Atmospheric Administration)(以下, NOAAと呼ぶ)の「NGDC/WDS グローバル歴史津波データ ベース」(NGDC/WDS Global Historical Tsunami Database)

(1) 産総研「津波堆積物データベース」

https://gbank.gsj.jp/tsunami_deposit_db/index.html 産総研は過去の巨大津波の規模や発生時期を解明 するため、津波堆積物の調査・研究を実施し、その 成果を「津波堆積物データベース」として公表してい る.本データベースは、地形判読などによって決定 した調査地点において柱状堆積物試料を採取し、多 くの試料に対する分析結果などを総合的に判断した 結果をまとめたものである.なお、迅速に成果を公 表することを目的として、掘削地点の位置情報のみ、 掘削地点の位置情報と調査の結果、掘削地点の位置 情報と産総研の解釈による津波堆積物の有無にわけ て公表されている.「津波堆積物データベース」の表 示例を図 4.1-1 に示す.

(2) 東北大・原子力安全基盤機構「津波痕跡データ ベース」

http://irides.tohoku.ac.jp/project/tsunami-db.html

東北大・原子力安全基盤機構は原子力発電所等の 安全性評価に活用するため、津波専門家との協働で 「津波痕跡データベース」を整備し、約3万件の津波 痕跡データを公表している.なお、本データベース は2018年11月1日以降、サーバーメンテナンスの ため運用を停止している(2019年10月26日時点).

図 4.1-1「津波堆積物データベース」(産総研)の表示 (高知県四万十町における津波堆積物調査結果)

ここでは,藤原ほか(2015)で記載された,「津波痕 跡データベース」における文献(古文書・史料集)の 信頼度を表 4.1-1 に,津波痕跡高の信頼度の分類を 表 4.1-2 に,津波痕跡データ登録数集計(2014 年 7 月 30 日時点)を表 4.1-3 に示す.

(3) 合同調査グループ「痕跡調査結果」

http://www.coastal.jp/ttjt/index.php? 現地調査結果

合同調査グループは 2011 年東北地方太平洋沖地 震津波を対象に,津波痕跡調査結果を公表している. 東北大・原子力安全基盤機構の「津波痕跡データベー ス」と同様に,表4.1-2 に示す基準で分類した津波痕 跡高の信頼度が示されている.津波遡上高および浸 水高の分布図を図4.1-2 に示す.

図 4.1-2 2011 年東北地方太平洋沖地震津波の遡上高 および浸水高の分布図(合同調査グループ)

(4) NOAA 「NGDC/WDS グローバル歴史津波データ

ベース」

 $https://www.ngdc.noaa.gov/hazard/tsu_db.shtml$

NOAA は紀元前 2000 年以降に世界各地 (主に大 西洋,インド洋,太平洋,地中海,カリブ海)で発 生した津波を対象に,津波の波源 (Tsunami source event) と遡上 (Tsunami runup) に関するデータを整備 し,「NGDC/WDS グローバル歴史津波データベー ス」(NGDC/WDS Global Historical Tsunami Database) を公開している.「NGDC/WDS グローバル歴史津波 データベース」の検索例 (日本国内の津波痕跡を対象 に古い順に表示)を表 4.1-4 に示す. 本研究資料では、日本国内における津波痕跡の データを網羅した「津波痕跡データベース」(東北大・ 原子力安全基盤機構)を用いて、過去に南海トラフ 沿いで発生した地震を対象に、特性化した波源断層 モデルの妥当性の検討を行う。検討に使用する津波 痕跡データについては 4.2 節を、妥当性の検討につ いては 10 章を参照されたい。

表 4.1-1 「津波痕跡データベース」(東北大・原子力安全 基盤機構)における文献(古文書・史料集)の信 頼度(藤原ほか(2015)を転載)

文献自体の 信頼度	判断基準
Ø	A1:直接目撃者が被災直後に記したもの. A2:その地点の公的な立場の人(各主,代官, 支配領主など)が記録したもの.津波被害に よる免税文書など. A3:寺院での過去帳(死者リストなど) B3:寺院などで石段○段目などと明確に言 い伝えられている記述を集めたもの.
0	B1:A1からA3に基づき,江戸から明治期 の公的史料編纂者がまとめた文書.インテ リの随筆など. B2:個人の年代記など,直接体験者の伝記 であるが,体験から文章化までに年代が経っ ている記述を集めたもの. C1:明治から昭和・平成までに編集された 市町村史編纂者が地元伝承を集めたもの.
Δ	 C2:被災時に旅行者が風聞を文章化したもの. C3:被災時に遠方の地方の人がニュースとして記録したもの. D:Cより劣るもの.昭和・平成の現代人が 憶測によりまとめたもの.
×	E:偽書である(東日流三郡誌など)

表 4.1-2 「津波痕跡データベース」(東北大・原子力安全 基盤機構)における津波痕跡高の信頼度の分類 (1960 年チリ地震以降,藤原ほか(2015)を転載)

			判断基準
	А	信頼度大な るもの	痕跡明瞭にして,測量誤差最も小 なるもの
信	В	信頼度中な るもの	痕跡不明につき,聞き込みにより 周囲の状況から信頼ある水位を知 るもの.測量誤差小
顧度	С	信頼度小な るもの	その他砂浜などで異常に波がはい 上がったと思われるもの,あるい は測点が海辺より離れ測量誤差が 大なるもの
	D	信頼度極小 なるもの	高潮, 台風などの影響で痕跡が重 複し, 不明瞭なもの, など

s t		78 77 90				痕	亦信頼度の内	訊		
洋汉名	X原致	狼跡忤釵	使潮記睞	A	8	υ	٥	×	z	精査中
冟観地震津波	23	14	0	0	0	0	-	0	13	0
二和(紀伊半島冲)地震津波	7	0	0	0	0	0	0	0	0	0
嘉保東海地震津波	7	0	0	0	0	0	0	0	0	0
正平南海地震津波	8	9	0	0	0	4	0	0	2	0
明応南海地震津波	8	0	0	0	0	0	0	0	0	0
明応東海地震津波	33	290	0	0	4	21	74	21	170	0
慶長豊後地震津波	13	119	0	9	3	12	3	25	71	0
慶長東海地震津波	25	180	0	-	4	22	37	15	93	8
慶長三陸地震津波	23	105	0	2	2	23	15	1	62	0
駒ケ岳噴火津波	7	8	0	0	1	0	-	0	9	0
日向灘地震津波	3	18	0	0	0	7	-	-	6	0
延宝三陸地震津波	6	23	0	0	0	3	17	2	-	0
延宝房総地震津波	18	135	0	0	11	33	48	e	40	0
元禄(北米カスケード)津波	80	6	0	0	-	3	0	0	5	0
元禄地震津波	48	331	0	2	15	17	83	33	209	2
宝永地震津波	67	1157	0	70	101	168	82	22	712	2
寛保(渡島大島)噴火津波	16	247	0	7	6	42	38	5	146	0
宝暦佐渡地震津波	7	0	0	0	0	0	0	0	0	0
宝暦青森県東方沖地震津波	80	2	0	0	0	0	0	0	2	0
明和沖縄本島南西沖地震津波	3	2	0	0	0	-	0	0	-	0
日向灘地震津波	3	9	0	0	0	0	1	2	2	-
八重山地震津波	21	214	0	22	8	65	8	0	56	0
千島列島津波	4	0	0	0	0	0	0	0	0	0
鹿児島湾北部海底噴火津波()	3	0	0	0	0	0	0	0	0	0
鹿児島湾北部海底噴火津波(0	0	0	0	0	0	0	0	0	0
鹿児島湾海底噴火津波	3	1	0	0	0	0	0	0	1	0
雲仙普賢岳山体崩壊津波	10	183	0	89	26	1	0	0	67	0
寬政北海道西方沖地震津波	3	1	0	0	0	0	0	0	1	0
寛政西津軽地震津波	8	24	0	0	0	4	0	1	19	0
寛政三陸地震津波	9	135	0	0	3	10	40	4	78	0
象潟地震津波	7	78	0	0	0	4	0	1	73	0
3天保(山形県沖)地震津波	21	89	0	1	5	22	29	1	31	0
トロトロナセンサルの手が	•	-								

表 4.1-3 「津波琅跡データベース」(東北大・原子力安全基盤機構)における津波痕跡データ登録数集計(2014 年 7 月 30 日時点,藤原ほか(2015)を転載)(1/3)

(注)「津波痕跡データベース」は 2018年11月1日以降,サーバーメンテナンスのため運用を停止している(2019年10月26日時点).そのため,藤原ほか(2015)が 2014年7月30日に「津波痕跡データベース」を参照して作成した表を転載することとした.

「東京」	帯社々	や詰物	這點性對	体油司总			復日	弥信頼度の内	閒		
	L XI H	XEVEX	JIX JULIT SX	1X/#/1 RL 5%	A	۵	υ	۵	×	Z	精査中
0043	1843天保根室沖地震津波	21	21	0	3	4	9	5	1	2	0
0044	1854安政東海地震津波	56	1885	0	35	70	135	200	25	1420	0
0045	1854安政南海地震津波	52	541	0	62	35	123	35	18	268	0
0048	1856安政三陸(八戸沖)地震津波	16	149	0	4	10	42	69	2	22	0
W008	1868チリ(アリカ)地震津波	5	4	0	0	0	0	0	0	4	0
000M	1877チリ(イキケ)地震津波	4	11	0	0	0	0	0	0	11	0
0053	1894根室半島南東沖地震津波	10	85	5	0	0	9	15	0	64	0
0055	1896明治三陸地震津波	19	1007	1	291	3	364	0	0	160	189
0057	1897三陸はるか沖地震津波	3	53	0	0	0	40	0	0	13	0
0059	1899宮崎県沖地震津波	2	2	2	1	0	0	0	0	1	0
0063	1911 喜界島地震津波	9	e	0	0	-	-	0	-	0	0
W014	1918千島列島ウルップ島東方沖地	9	27	24	9	2	3		0	15	0
W016	1922チリ(アタカマ)地震津波		4	3	e	0	-	0	0	80	0
0067	1923大正関東大地震津波	19	319	13	9	20	140	12	-	140	0
T001	1929日向灘地震津波	2	0	0	0	0	0	0	0	0	0
0074	1931日向灘地震津波	4	-	1	0	0	0	0	0	1	0
0075	1933昭和三陸地震津波	17	2376	23	897	229	789	3	0	458	0
0083	1938宮古島付近地震津波	2	0	0	0	0	0	0	0	0	0
0091	1939日向灘地震津波	4	4	3	0	0	0	0	0	4	0
0093	1940積丹半島沖地震津波(神威岬)	10	116	14	С	2	24	27	0	60	0
0094	1941日向灘地震津波	7	5	2	0	0	0	0	0	5	0
9600	1944昭和東南海地震津波	26	796	76	136	13	81	13	0	553	0
W020	1946アリューシャン津波	7	26	21	12	0	2	0	0	15	0
6600	1946昭和南海地震津波	30	1693	35	322	264	289	10	0	721	87
0102	1952十勝沖地震津波	10	382	59	38	40	160	41	0	103	0
W021	1952カムチャッカ津波	9	224	19	11	18	37	70	0	88	0
0109	1953房総半島南東沖地震津波	9	59	42	6	5	2	3	0	38	2
W022	1957アリューシャン地震津波	8	24	24	10	11	0	0	0	3	0
0111	1958エトロフ島沖地震津波	4	61	55	4	11	1	0	0	45	0
W023	1960チリ地震津波	44	1980	229	358	512	371	37	0	697	5
0121	1961日向灘地震津波	9	12	12	3	0	1	0	0	8	0
0128	1963エトロフ島沖地震津波	0	0	0	0	0	0	0	0	0	0
W025	1964アラスカ地震津波	9	61	59	28	0	0	0	0	33	0
0131	1964新潟地震津波	14	966	162	147	159	219	24	0	401	48

4-4

(注)「津波痕跡データベース」は 2018年11月1日以降, サーバーメンテナンスのため運用を停止している(2019年10月26日時点).そのため,藤原ほか(2015) が 2014年7月30日に「津波痕跡データベース」を参照して作成した表を転載することとした.

単行る	44 44 44	and	100 110 103 1 0			痕朗	情頼度の内	訳		
手沒力	XIIXX	狼 ण1十致	快速記録	A	в	c	D	×	z	精査中
日向灘地震津波	9	105	70	27	5	15	0	0	58	0
-勝沖地震津波	11	1986	271	173	130	852	45	0	784	2
11向灘地震津波	2	6	6	0	0	4	0	0	5	0
向灘地震津波	3	39	39	33	0	17	0	0	19	0
医半島沖地震津波	5	193	143	85	18	35	2	0	53	0
(海道東方冲(色丹島冲)地震	9	84	74	46	18	0	0	0	20	0
·城県沖地震津波	2	28	28	0	0	0	0	0	28	0
本海中部地震津波	29	3748	377	861	1284	566	7	0	883	147
向灘地震津波	2	12	12	4	0	0	0	0	80	0
湾東方沖地震津波	-	0	0	0	0	0	0	0	0	0
登半島沖地震津波	2	13	13	7	0	0	0	0	9	0
海道南西沖地震津波	16	2115	235	404	464	456	62	0	716	13
海道東方沖地震津波	9	353	98	87	116	49	8	0	89	4
美大島近海津波	2	120	102	83	7	-	0	0	29	0
美大島近海津波(余震)	4	64	60	39	3	0	0	0	22	0
リアンジャケ地震津波	8	135	135	85	16	1	0	0	33	0
向灘地震津波	2	3	3	0	0	0	0	0	3	0
1 向灘地震津波	2	7	7	7	0	0	0	0	0	0
いー南部地震津波	4	63	63	31	0	0	0	0	32	0
:那国島近海津波	-	9	9	9	0	0	0	0	0	0
垣島南方沖津波	1	4	4	4	0	0	0	0	0	0
·湾東方沖津波	-	4	4	4	0	0	0	0	0	0
勝沖地震津波	11	263	0	177	53	31	0	0	2	0
伊半島沖地震津波	5	11	11	11	0	0	0	0	0	0
海道冲地震津波	7	16	16	16	0	0	0	0	0	0
·島列島東方沖地震津波	9	114	111	61	2	2	0	0	49	0
·島列島東方沖地震津波	9	26	94	52	2	2	0	0	41	0
2登半島沖地震津波	4	11	11	11	0	0	0	0	0	0
·潟県中越沖地震津波	7	3	3	3	0	0	0	0	0	0
鋑河湾地震津波	1	0	0	0	0	0	0	0	0	0
リ地震津波	3	336	1	199	92	61	0	0	48	0
北地方太平洋沖地震津波	5	5907	1	4721	958	115	17	1	118	1
A = 1	and a second state	Contraction of the second s			1 CONTRACTOR OF A	and and a state of the state of				

(注)「津波痕跡データベース」は 2018 年 11 月 1 日以降, サーバーメンテナンスのため運用を停止している(2019 年 10 月 26 日時点). そのため, 藤原ほか(2015) が 2014 年 7 月 30 日に「津波痕跡データベース」を参照して作成した表を転載することとした.

NOAA	NATIONAL	CENTERS PC	RMATION																	Search		ď
INCOME & NUESDIE & MUCH	New COODI > New	And Manada					Tsunami Runup S	earch - sorte	d by Date, Co	untry, Location na	ame										9	AND COLOR
Tsunami Runups View parameter dest For additional inform click on the links in t	where Runup riptions and acc ation about the te Tsu Src. EQ	 Country = JAP ess statistical infor esct tsommigenic eact Mag. Volcano, or 	AN mation by dickle squake, tsunami Tsu Runup col.	ng on column heav runup, or source umns.	idings. event																	
o de Ca		Tsunami	Source	Addl Into			Tsunami Runui	Location	100				Tsunami Ri	mup Measurem	ents		TSUN	ami Runup Le	scation Effects			
Year No Dy H	r Min Sec	Val Code Sre	L EQ Vol- Mag cano	Tsu B	ful ful Count	State/ Province/ Prefecture	Name	Latitude	Longitude fro	Vistance Arrive m Source Day H	al Time Tr our Min Mr	wel Time	Max He Vater Inund. eight Dista	ation Type	Per Min N	um De Nu	njuries Das mi De SMI	nage Hou I De N	ses Destroyed um De	House	Damaged	
684 II 29		•1	8.4	•	JAPAN	kocht	TOSA	33.51000	133.44000	124				1								Ľ
684 II 29		*1 .H	8.4	×1	JAPAN	MIE	ATASHIKA	33.91700	135.15000	255			3.00									
701 5 12		4 I	70	•1	JAPAN	KYOTO	TANGO, KYOTO	35.87000	135.08000	35			_	1								-
704 8 2		• I •	70	• • •	MARAL	CONTRACTOR OF A DECISION OF A DECISIONO OF A DECISIONO OF A DECISIONO OF A DECISIONO O	KUMAMONADA	00000.05	NAME OF P.	-				-		1000 T			N.L.F.	-	-	-
745 6 30		-) - 	6.5	· · ·	NARAL TABAN	KUMAMUTO	KUMAROTO DS4KA RAV	34,50000	130.70000	12	+			-		5 02CT		~	0/6-	2	+	Ť
766 7 20		+ 10	6.5 Vol	1 41	JAPAN J	KAGOSHIMA	OSUMI ISLAND	30,00000	130.00000	190	+			•	-	n (m			╞		-	T
799 9 18		2 0 1		•	IAPAN	TBARANT	HITACHI	36.58000	140.67000				2.00	- 1								1
799 9 18		2 0 5		•1	NAPAN	IRARANC	KASHIPAA	35.93300	140.69000					1								
299 9 18		•1 0 7		•1	NAGAL	IBARAKI	90033	40.18780	141.76890										+			1
700 0 18	+	0.0		• • •	NAGAL	TRARAKI	MAKAMINATO	36.33300	140.59000	1	+		+		_	-	-		+		-	T
850 11 32			21		ADAMS	CHIBA	BOSO PERINSULA	00005-45	139,82000	00	+			1 00.000	+	-		-	+			T
855 6		• 0 1-	3	1.	JAPAN	KAGOSHIMA	KUMARO	30.68000	130,96700	9				- 1				4	+			T
863 7 10		(m)	2.0		JAPAN	NIIGATA	MAGETSUKO	37.10000	138,00000		-						-		+			T
869 7 23		41 I.	8.6	*1	NAGAL	FUKUSHIMA	IWAKI	37.07000	140.90000	300				4								
869 7 13		•1	8.6	•••	JAPAN	IWATE	RIKUCHU	39.74000	142.00000	208				-								
869 2 13		*1	8.6	•	JAGAN	MIYAGI	SENDAL	38.26700	141.03300	243				-		1000 3		3	-	~		-
869 7 13			9.6		JAPAN	MIYAGI	SHIDGAMA	38.30000	141,00000	245						-		-	+		-	Ť
869 7 13			8.0		TAPAN	WAKAYANA	IWASHIRO < COAST WIIGATA DEFENCTIBE	33.78300	135,28300	126			4.00			a nont			+			1
887 8 26		(+) (+)	8.6	1	Japan	KANAGAWA	HPUIGA	35.30000	139,65000	475			AA-L			-		2				Ť
887 8 25		4	8.6		JAPAN	OSAKA	OSAKA BAY	34.50000	135.33000	167				1		2		2				1 i
922		*1	Z.0	+1	NAPAN.	MIE	KUMAMONADA	33.80000	136.70000				2.00	-								
1026 6 15		*1 *1	2.5	• 1	JAPAN	SHIMANE	IWAMI COAST	34,88000	132.43000	10	_		10.00	1		1000 3						
1025 5 10 1088 5 10		- •	10		TAPAN	YAMAGUCHI	SUSA	34.515/0	142 0000	27	+		2 00				+		+		+	1
10461 12 17		 	8.4	1.	14Pars	PULL .	Section control with	34.69000	136.54000	117			0017	*								T
1096 12 17		4 I 1	8.4	• •	JAPAN	MIE	1.SU	34.71700	136.51700	120			5.00	i d								
1096 12 17		91 14 17	8.4	*1	JAPAN	SHIZUOKA	SHIZUOKA	34,98000	138.40000	132	_			14	_							
1096 12 17		+ +	8.4	•1 •	JAPAN	REFE DE MAX	ATSUMI	34.62000	137.11000	78	+		00'2		-	-		*	+			T
CC C 0001			1-0 V 0	a •	TADATE	100AP AVS180A	NUMBER OF CONST	0000/160	135 5000	101								2	+		100	2
1241 5 22		+	2.0	()	JAPAN	KAWAGAWA	KAMAKURA	35.30900	139,55000	18				14		-	-					Ê
1241 5 22		4	2.0	*1	MAGAL	KAMAGAWA	YUIGAHAMA	35.28300	139.56700	3.8								1	-			-
1257 10 9		4 1 4	2.0	-1	NAGAL	IWATE	RU13	40.19500	141.79000	165				1							-	Ē
1257 10 9		4 1	2.0	•1	NAPAN	IWATE	NODA	40.11000	141,82000	C05				1								П
1257 10 9		*1 +4	1.5	-1	NAPAL	IWATE	SANRIKU COAST	39.00000	141.70000	199	+			-	+	-	+		+		_	-
1257 10 9		4	70	•1	JAPAN	KANAGAWA	SAGANL BAY	35.20000	139.50000		_			1	_		-		_		_	1
1293 5 27		4) H	77	•1	JAPAN	KANAGAWA	Kamakura	35.30900	139.55000	81	+		-	н	+				+		-	T
1341 10 31		•1 •1	70	*1	JAPAN	AONDRI	3USAN-MIMATO	41.03300	140.33300	BC	+		+	-		2600 4	-		+			
1360 11 2		+ +	2.0	• • •	NAGAL	OSAKA	OSAKA BAY	34,66700	135.43300	158				4	-	-	+		+			1
1200 11 22			2.0		NEARC		OWSE	34,08300	139,20000	10						-	+					Т
27 TT 1051		+ -	NA NA		NEARL	DEAVA	WAMATANA MAMBALIBA PCAVA	24.70000	135.20000	105	-					Ann 5			+			Ť
2 8 1921			8.4		JAPAN	DSAKA	NAMIVA' OSAKA	34,65000	125,50000	189	-			-		200 3		2	+			Ť
1361 8 3		4	8.4		NAGAL	OSAKA	SETTSU	34.77820	135.59510	205				-								T
1351 8 3		4 1 2	8.4	*1	NAGAL	TOKUSHIHAA	AWA	34.06000	134.60000	124				1		50 2			-			
1361 8 3		4) +-	8.4	•1	NYAYI	TOKUSHIMA	MARUTO, TORUSHIMA	34.28300	134.61700	136				-								
1351 8 3		4 1 *	6.4	-1	NVANC	TOKUSHIMA	YUKI PORT, TOKUSHIMA	33.76700	134.60000	56			_			200 3		4	1700	T		-

表4.1-4 「NGDC/WDS グローバル歴史津波データベース」(NOAA)の検索例 (日本国内の津波痕跡を対象に古い順(本表では1361年までに発生した津波)に表示した)

研究資料第 439 号 第一部 本編 4.1 津波痕跡に関するデータベースのレビュー

4.2 南海トラフ沿いの地震による津波痕跡データ

本節では,過去に南海トラフ沿いで発生した5 つの地震(1707年宝永地震,1854年安政東海地 震,1854年安政南海地震,1944年昭和東南海地震, 1946年昭和南海地震)について,10章「特性化した 波源断層モデルの妥当性の検討」で使用する津波痕 跡の選別について説明する.なお,津波痕跡高と計 算津波高の比較方法については10章を参照された い.

表 4.2-1 に対象とする 5 つの地震それぞれについ て、使用する津波痕跡の選別条件と選別後のデータ 数をまとめて示す.津波痕跡のデータは東北大・原 子力安全基盤機構の「津波痕跡データベース」(2015 年 8 月 4 日時点)を使用した.

10章「特性化した波源断層モデルの妥当性の検討」 では、汀線における計算最大水位(T.P.)と津波痕跡 高を比較する.このため、是永ほか(2013)による津 波痕跡データの選別方法を参考に、痕跡高 50 cm 以 上、汀線からの遡上距離 100 m 以内の津波痕跡デー タのみ選別して用いることとした.また、1946 年昭 和南海地震については信頼度が最も高い痕跡信頼度 A のデータのみを使用した.一方、その他 4 つの地 震について、痕跡信頼度 A のみの条件でデータを選 別すると、データ数が少なくなり地理的な分布に偏 りが生じるため、痕跡信頼度 A ~ D で選別したデー タも使用した.

選別の結果,1707年宝永地震,1854年安政東海 地震,1854年安政南海地震,1944年昭和東南海地震, 1946年昭和南海地震それぞれについて,74,72, 82,82,97の津波痕跡データを使用することとした. 選別した津波痕跡データの分布図を図4.2-1に,リ ストを表4.2-2に示す.

		ラ	データの選別条	件	遅回後の
対象とする地震	データの出典	痕跡信頼度	痕跡高	汀線からの 遡上距離	医所後のデータ数
1707年宝永地震	「津波痕跡データベース」*	A~D	50 cm 以上	100 m 以内	74
1854年安政東海地震	「津波痕跡データベース」*	A~D	50 cm 以上	100 m 以内	72
1854 年安政南海地震	「津波痕跡データベース」*	A~D	50 cm 以上	100 m 以内	82
1944 年昭和東南海地震	「津波痕跡データベース」*	A~D	50 cm 以上	100 m 以内	82
1946年昭和南海地震	「津波痕跡データベース」*	А	50 cm 以上	100 m 以内	97

表 4.2-1 10 章「特性化した波源断層モデルの妥当性の検討」で使用する津波痕跡の選別

*2015年8月4日時点のデータを使用した.

図 4.2-1 選別した津波痕跡データの分布図(「津波痕跡データベース」(東北大・原子力安全基盤機構) (2015 年 8 月 4 日時点)をもとに作成)(1/2)

図 4.2-1 選別した津波痕跡データの分布図(「津波痕跡データベース」(東北大・原子力安全基盤機構) (2015 年 8 月 4 日時点)をもとに作成)(2/2)

表 4.2-2 選別した津波痕跡データのリスト(「津波痕跡データベース」(東北大・原子力安全基盤機構)(2015年8月4日時点)) (1/5)

No.	経度	緯度	痕跡高(m)	痕跡信頼度
1	138.899002	35.025398	2.2	А
2	133.369003	33.414200	5.5	А
3	134.154007	33.282398	7.1	А
4	134.296997	33.548000	7.5	А
5	132.996994	32.785599	8.5	А
6	132.968002	32.752701	10.1	А
7	135.373001	33.730301	1.9	В
8	134.570999	33.766102	6.5	В
9	134.151001	33.285198	7.5	В
10	133.231003	33.327499	9.25	В
11	133.098007	33.056198	9.5	В
12	133.294006	33.390800	12.6	В
13	134.048996	34.354301	1.8	С
14	138.755997	34.732101	2.25	С
15	138.759003	34.869900	2.25	С
16	138.761993	34.738098	2.25	С
17	138.768005	34.827400	2.25	С
18	138.779999	35.000702	2.25	С
19	138.791000	34.910400	2.25	С
20	138.837006	35.017200	2.25	С
21	138.845001	35.013401	2.25	С
22	138.852997	35.015999	2.25	С
23	138.856003	35.019100	2.25	С
24	138.869003	35.021500	2.25	С
25	138.873001	34.619400	2.25	С
26	138.878006	35.019901	2.25	С
27	138.888000	34.628799	2.25	С
28	138.897003	35.026501	2.25	С
29	138.914001	34.640598	2.25	С
30	138.966995	34.657398	2.25	С
31	139.041000	34.772800	2.25	С
32	134.360001	33.591900	3.0	С
33	135.162994	34.040298	3.0	С
34	133.363007	33.426102	3.1	С
35	131.804993	33.126400	3.25	С
36	135.373001	33.729900	3.5	С
37	133.722000	33.540001	4.5	С
38	136.701004	34.348301	4.5	C
39	135.171005	34.031101	5.0	С
40	135.677994	33.490002	5.0	C
41	133.55/007	33.502800	5.5	C
42	133.565002	33.501701	5.5	C
43	133.56/993	33.498600	5.5	C
44	133.5/499/	33.49/200	5.5	C
45	135.102005	33.966599	5.5	
40	130.11/996	33.900002	5.5	
4/	133./3/004	33.329400	0.3	C
48	134.143004	33.26/498	0.5	C
49 50	134.149002	33.263/02	6.5	C
50	134.300992	55.020400	0.5	

(a)	1707	年宝永地震
-----	------	-------

No.	経度	緯度	痕跡高(m)	痕跡信頼度
51	132.802994	32.752499	7.0	С
52	133.281006	33.385601	8.0	С
53	132.968994	32.752800	8.6	С
54	132.964005	32.799702	10.0	С
55	135.419006	34.687599	2.5	D
56	134.052002	34.351898	3.0	D
57	139.839005	33.075001	3.0	D
58	136.554993	34.614700	3.5	D
59	137.597000	34.678902	3.5	D
60	139.042999	34.770901	3.5	D
61	136.242004	34.063202	4.0	D
62	136.723999	34.334702	4.0	D
63	136.899002	34.388100	4.0	D
64	136.197998	33.964401	4.5	D
65	136.565994	34.286701	4.5	D
66	136.589996	34.272301	4.5	D
67	135.604004	33.509399	5.0	D
68	136.244003	34.016499	5.5	D
69	136.268005	34.102901	5.5	D
70	139.677002	33.134701	5.5	D
71	138.964996	34.671799	6.7	D
72	136.501007	34.276299	7.0	D
73	136.210999	34.000401	7.5	D
74	136.556000	34.283001	10.0	D

表 4.2-2 選別した津波痕跡データのリスト(「津波痕跡データベース」(東北大・原子力安全基盤機構)(2015年8月4日時点)) (2/5)

No.	経度	緯度	痕跡高(m)	痕跡信頼度
1	136.652054	34.293610	3.6	А
2	138.891525	35.052090	6.0	А
3	138.873947	34.622940	6.4	А
4	138.902481	35.050751	7.2	А
5	136.652008	34.293949	4.0	В
6	138.784683	34.669361	4.4	В
7	135.936920	33.644169	6.0	В
8	135.942581	33.633781	6.0	В
9	138.962769	34.674648	6.7	В
10	138.963135	34.674419	6.7	В
11	138.964310	34.672951	6.7	В
12	136.843887	34.483608	1.05	С
13	138.515564	35.020279	1.06	С
14	137.176926	34.659859	2.7	С
15	139.093079	35.008331	3.0	С
16	135.826385	33.514999	4.0	С
17	136.771973	34.509720	4.5	С
18	138.904999	35.045921	4.5	С
19	136.699829	34.346470	4.75	C
20	135.896393	33.558331	5.0	C
21	136.266937	34.103329	5.0	C
22	136.401184	34.218300	6.0	C
23	136.882217	34.321671	6.1	C
24	136.793976	34.257381	9.0	C
2.5	136.747223	34.525002	10.6	C
2.6	136.8832.86	34.320099	10.6	C
27	136.884018	34.319118	10.6	C
2.8	132.684174	32.793892	1.0	D
29	133.575287	33.497501	1.65	D
30	134.425568	33.635559	2.0	D
31	136.581528	34.297020	2.0	D
32	142.160828	26.639780	2.0	D
33	135.219177	33.811192	2.4	D
34	136.597153	34,287971	2.5	D
35	135.313675	33.769440	2.55	D
36	136.582275	34.276131	3.0	D
37	138.719498	35.135761	3.0	D
38	139.110474	35,141579	3.0	D
39	139.574112	35.287941	3.0	D
40	136.241302	33,986641	3.5	 D
41	136.685669	34.346062	3.5	D
42	136.719650	34.327950	3.5	 D
43	139.556061	35,297249	3.5	D
44	136.672989	34.314320	4.0	D
45	136.724457	34.335060	4.0	D
46	138.470596	34,960388	4.0	D
47	138.519165	35.013062	4.0	D
48	138.876755	34.624081	4.0	D
49	136.656677	34.342781	4.5	D
50	136.658386	34.321011	4.5	D

(b)	1854	年安政東海地震
-----	------	---------

No.	経度	緯度	痕跡高(m)	痕跡信頼度
51	136.980835	34.549938	4.5	D
52	138.879562	35.059189	4.5	D
53	142.194717	27.093889	4.5	D
54	138.763611	34.804150	4.75	D
55	138.791107	34.660000	4.8	D
56	136.791794	34.507389	5.0	D
57	136.873245	34.385109	5.0	D
58	138.232498	34.600559	5.0	D
59	138.860275	35.019169	5.0	D
60	138.868942	35.021530	5.0	D
61	136.217773	33.964722	5.5	D
62	136.287582	34.128220	5.5	D
63	136.172546	33.926701	6.0	D
64	138.180283	34.607220	6.0	D
65	138.901413	35.043152	6.0	D
66	138.959747	34.676441	6.4	D
67	136.587784	34.272499	6.5	D
68	138.883743	35.053261	6.5	D
69	138.964523	34.670841	6.7	D
70	136.196426	33.965408	7.5	D
71	136.209442	33.932331	7.5	D
72	136.180893	33.939510	8.5	D

表 4.2-2 選別した津波痕跡データのリスト(「津波痕跡データベース」(東北大・原子力安全基盤機構)(2015年8月4日時点)) (3/5)

No.	経度	緯度	痕跡高(m)	痕跡信頼度
1	134.419006	33.666599	3.6	А
2	134.570007	33.760101	4.8	А
3	135.317993	33.768101	5.6	А
4	133.059006	33.039700	7.5	А
5	135.078995	33.919201	4.0	В
6	135.143005	34.109402	4.5	В
7	135.169998	34.025600	4.5	В
8	135.171997	34.027302	4.8	В
9	133.567993	33.498600	5.0	В
10	135.261002	34.380299	0.9	С
11	134.621002	34.182499	1.05	С
12	133.574997	33.497501	1.32	С
13	134.617004	34.186298	1.5	С
14	135.373001	33.729698	1.5	С
15	134.593002	34.006401	1.75	С
16	135.070999	34.275398	2.0	С
17	135.944000	33.626999	2.0	С
18	136.013000	33.726898	2.0	С
19	134.149002	33.285702	3.0	С
20	132.628998	32.772202	3.3	С
21	134.307999	33.571701	3.3	С
22	132.591003	32.946098	3.5	С
23	134.360001	33.591900	3.5	С
24	135.149002	33.879700	3.5	С
25	134.300995	33.547501	3.6	С
26	132.602997	32.944099	3.75	С
27	132.684998	32.789700	4.0	С
28	133.722000	33.540001	4.0	С
29	135.132996	34.131901	4.0	C
30	135.445999	33.561501	4.0	С
31	134.541000	33.731899	4.05	С
32	132.548004	32.945801	4.5	С
33	132.964005	32.799702	4.5	С
34	135.343994	33.682499	4.5	С
35	135.716003	33.485001	4.5	С
36	135.781006	33.468300	4.5	C
37	135.792999	33.486698	4.5	C
38	133.574997	33.497200	4.75	C
39	135.824997	33.515301	4.75	C
40	133.757004	33.529400	5.0	C
41	134.313004	33.557800	5.0	C
42	135.490997	33.549301	5.0	C
43	135.604004	33.509399	5.0	C
44	135./01004	33.493599	5.0	C
45	135./3/000	33.485600	5.0	
46	135.11/996	33.959400	5.25	C
4/	133.0/2006	33.03/800	5.5	
48	134.306000	22.592902	5.5	C
49	134.322998	33.382802	5.5	
50	134.393994	33.773602	5.5	U

(c)	1854	年安政南海地震
-----	------	---------

No.	経度	緯度	痕跡高(m)	痕跡信頼度
51	134.608002	33.779999	5.5	С
52	134.425995	33.635601	6.0	С
53	135.774994	33.478100	6.75	С
54	133.035995	33.037800	8.5	С
55	135.401001	33.720600	9.0	С
56	132.119003	33.875801	1.0	D
57	132.419006	34.359901	1.0	D
58	133.087997	33.946098	1.0	D
59	134.007004	34.353699	1.3	D
60	131.619995	33.258999	1.5	D
61	133.091003	34.382999	1.5	D
62	135.895996	33.558300	1.5	D
63	132.007004	33.104198	2.0	D
64	132.072006	32.966702	2.0	D
65	134.214996	34.683601	2.0	D
66	135.188995	34.671101	2.0	D
67	131.867996	33.076302	3.0	D
68	131.921997	32.800598	3.0	D
69	131.923996	32.964401	3.0	D
70	131.975998	32.921700	3.0	D
71	131.994003	32.921902	3.0	D
72	132.397003	33.476898	3.0	D
73	132.417007	33.457298	3.0	D
74	132.432999	33.053101	3.0	D
75	132.496002	33.016701	3.0	D
76	132.500000	33.123299	3.0	D
77	132.511002	32.939701	4.0	D
78	132.550995	32.964199	4.0	D
79	132.552994	33.229801	4.0	D
80	132.602997	32.946400	5.0	D
81	132.968002	32.752201	5.0	D
82	134.307999	33.562801	7.0	D

表 4.2-2 選別した津波痕跡データのリスト(「津波痕跡データベース」(東北大・原子力安全基盤機構)(2015年8月4日時点)) (4/5)

INO.	栓皮		狠跡尚(m)	狠跡信頼度
1	132.958893	32.779171	0.5	А
2	135.945724	33.627998	2.0	А
3	135.946777	33.633331	2.0	А
4	135.940994	33.621422	2.1	А
5	135.942169	33.622139	2.1	А
6	135.901367	33.563251	2.4	А
7	135.950562	33.624969	2.4	А
8	135.923355	33.576920	2.5	А
9	136.202774	34.077301	2.5	А
10	135.905365	33.564999	2.6	А
11	135.904144	33.559811	2.7	А
12	135.899567	33.557220	3.0	А
13	135.932388	33.594471	3.0	А
14	135.944504	33.632832	3.0	А
15	135.951187	33.627281	3.0	A
16	135.958221	33.653309	3.0	А
17	135.969284	33.655560	3.0	А
18	135.947586	33.589691	3.1	А
19	135.897858	33.561970	3.2	A
20	135.896362	33.560780	3.5	A
21	135.935776	33.593529	3.5	A
2.2	135.944824	33,591969	3.5	A
23	135.945816	33.589939	3.5	A
24	135 897308	33 556999	3.6	A
2.5	135.894577	33.556221	3.7	A
26	135 934067	33 593189	4.0	A
20	135 936676	33 596939	4.0	A
28	135 895493	33 556358	4.2	A
20	135 943054	33 592972	4.2	A
30	135 894943	33 558670	4.6	Δ
31	136 100036	34 074890	4.62	
32	135 891/18	33 558170	4.02	Λ
32	135.891220	33 557140	53	
31	135.8017220	33.557140	6.2	
35	136.400146	34 216541	6.2	A
36	135.036270	34.210341	6.3	A
30	136 147263	33.037301	6.71	A
28	136 206055	34 075600	6.2	
20	136 207214	34.076542	6.8	A
10	138 207214	34 686720	2.0	P
40	135 026554	33 6//080	2.0	<u>а</u>
41	135,930334	22 558221	<i>J.</i> 0 <i>A</i> 1	<u>а</u>
42	135.072227	34 077410	4.1 5.20	B
43	130.203300	24.07/419	0.5	
44	137.103800	24.039301	0.5	
43	13/.103090	24./00021	0.5	C
40	130.33/840	24.010809	0.0	
4/	130.9/3830	34./01389	1.0	
48	138.8902/4	35.01/220	1.1	
49	130.241623	34.063469	2.89	
- 50	133.9///83	33.038611	3.0	

			(d) 1944 年	昭和東南淮	毎地震
ЪT	47 11	Ath the	定时后在		10

No.	経度	緯度	痕跡高(m)	痕跡信頼度
51	136.107040	33.890869	3.0	С
52	136.254166	34.113789	3.0	С
53	136.261703	34.122749	3.0	С
54	136.212265	34.063110	3.41	С
55	136.218887	34.080391	3.52	С
56	136.211243	34.000450	3.9	С
57	136.241104	33.986641	3.9	С
58	136.128265	33.893639	4.2	С
59	136.200714	33.945190	4.65	С
60	136.204376	34.077469	4.95	С
61	136.200775	34.071999	5.08	С
62	136.206787	34.077759	5.25	С
63	136.466675	34.256939	5.25	С
64	136.195236	33.966789	5.3	С
65	136.128326	33.893002	5.5	С
66	136.138367	33.898849	5.5	С
67	136.197174	33.965149	5.5	С
68	136.172623	33.926128	5.9	С
69	136.399399	34.219810	6.0	С
70	136.461395	34.254440	6.0	С
71	136.501114	34.277500	6.0	С
72	136.146957	33.925339	6.1	С
73	136.148239	33.924278	6.1	С
74	136.272354	34.126732	6.65	С
75	136.267197	34.127861	6.8	С
76	136.271667	34.128429	7.32	С
77	136.267883	34.129570	7.65	С
78	136.149445	33.931900	8.4	С
79	136.880829	35.091389	1.25	D
80	138.225449	34.595131	2.0	D
81	136.217209	33.964581	4.55	D
82	136.247223	33.985561	9.09	D

表 4.2-2 選別した津波痕跡データのリスト(「津波痕跡データベース」(東北大・原子力安全基盤機構)(2015年8月4日時点)) (5/5)

No.	経度	緯度	痕跡高(m)	痕跡信頼度]	No.	経度	緯度	痕跡高(m)	痕跡信頼度
1	136.845993	34.477901	0.68	А		51	135.891006	33.556900	2.73	А
2	136.845993	34.477299	0.69	А		52	136.197998	33.964401	2.77	А
3	136.845993	34.478600	0.7	А		53	136.197006	33.965401	2.83	А
4	136.246002	34.016102	0.73	А		54	135.139008	34.118900	2.9	А
5	136.242996	34.106201	0.78	А		55	133.292999	33.388100	2.96	А
6	136.264999	34.102001	0.82	А		56	136.195007	33.973099	3.02	А
7	131.669006	32.428299	0.85	А	1	57	135.169998	34.025799	3.03	А
8	136.259003	34.096901	0.89	А	1	58	135.386993	33.716900	3.15	А
9	133.557007	33.504398	0.92	А	1	59	134.423004	33.636700	3.17	А
10	139.824997	34.918900	1.0	А	1	60	135.373001	33.730000	3.23	А
11	136.268005	34.102901	1.11	А	1	61	132.985001	32.867500	3.29	А
12	136.253006	34.014702	1.12	А	1	62	133.238998	33.333099	3.3	А
13	136.244003	34.016499	1.25	А	1	63	135.395996	33.715599	3.31	А
14	131.408997	31.576900	1.3	А	1	64	134.684998	33.831100	3.36	А
15	136.242996	34.015202	1.4	А	1	65	132.996002	32.939201	3.5	А
16	136.117996	33.899399	1.46	А	1	66	135.136002	34.111401	3.5	А
17	136.201004	34.075199	1.48	А	1	67	135.195999	34.142799	3.58	А
18	136.151001	33.923901	1.49	А	1	68	135.343994	33.680801	3.61	А
19	135.947006	33.628300	1.57	А	1	69	135.141006	34.111401	3.65	А
20	136.257004	34.117599	1.59	А		70	135.794998	33.489700	3.67	А
21	135.072006	34.275002	1.6	А	1	71	134.326996	33.581902	3.73	А
22	135.947006	33.627602	1.6	А		72	135.143005	34.109699	3.75	А
23	134.360001	33.592499	1.61	А		73	135.393005	33.718300	3.77	А
24	135.945999	33.627701	1.62	А		74	135.789001	33.482498	3.78	А
25	134.598007	34.000801	1.66	А		75	135.395996	33.714401	3.8	А
26	136.218002	33.967400	1.67	А		76	135.139008	34.110600	3.88	А
27	135.141998	34.109402	1.7	А		77	135.102997	33.965801	4.0	А
28	134.714996	34.255299	1.76	А	1	78	135.113998	33.960602	4.02	А
29	136.218994	33.968300	1.78	А		79	135.714005	33.485802	4.05	А
30	133.569000	33.498901	1.79	А	1	80	135.792999	33.485802	4.58	А
31	132.955994	32.778599	1.86	А		81	135.492004	33.548901	4.6	А
32	136.261002	34.121498	1.87	А	1	82	133.259003	33.364700	4.7	А
33	136.240997	33.986401	1.89	А	1	83	135.487000	33.549999	5.0	А
34	135.171997	34.185600	1.9	А	1	84	135.167007	34.026699	5.03	А
35	136.149994	33.931499	1.91	А	1	85	134.362000	33.625900	5.09	А
36	136.264008	34.125198	1.96	А	1	86	134.363007	33.624298	5.09	А
37	136.121002	33.898800	2.0	А	1	87	135.397995	33.628101	5.25	А
38	136.128006	33.893600	2.12	А	1	88	135.738998	33.484402	5.3	А
39	136.242996	33.986000	2.14	А	1	89	135.395996	33.630798	5.55	А
40	136.272995	34.127602	2.16	А	1	90	135.733994	33.485001	5.57	А
41	136.268005	34.128601	2.22	А	1	91	135.494003	33.545601	5.8	А
42	136.270996	34.128799	2.29	А	1	92	135.399002	33.630798	5.83	А
43	136.214005	34.001400	2.31	А	1	93	135.397003	33.631401	5.84	А
44	136.205994	33.976002	2.35	А	1	94	135.774994	33.475800	5.96	А
45	133.240997	33.278099	2.4	А	1	95	135.216003	33.814400	6.11	A
46	133.240997	33.279999	2.5	А	1	96	135.218002	33.810001	6.11	А
47	136.203003	33.971802	2.53	А	1	97	135.772995	33.478901	6.6	А
48	136.210999	34.000099	2.59	А	1]
49	133.242004	33.277199	2.7	А	1					
50	135.171005	34.026798	2.72	А	1					

(e) 1946 年昭和南海地震
4章の参考文献

- 藤原広行・平田賢治・中村洋光・長田正樹・森 川信之・河合伸一・大角恒雄・青井真・松山尚典・ 遠山信彦・鬼頭直・村嶋陽一・村田泰洋・井上 拓也・斎藤龍・秋山伸一・是永眞理子・阿部雄 太・橋本紀彦(2015):日本海溝に発生する地震 による確率論的津波ハザード評価の手法の検討. 防災科学技術研究所研究資料,400,216pp.
- 2) 是永眞理子・阿部雄太・橋本紀彦・秋山伸一・ 藤原広行(2013):確率論的津波ハザード評価に おける不確実さの取り扱いについて、日本地球 惑星科学連合合同学会、SSS35-P06.
- National Oceanic and Atmospheric Administration: NGDC/WDS Global Historical Tsunami Database, https://www.ngdc.noaa.gov/hazard/tsu_db.shtml (2019 年 10 月 26 日参照).
- 4) 産業技術総合研究所地質調査総合センター: 津波堆積物データベース, https://gbank.gsj.jp/ tsunami_deposit_db/index.html (2019 年 10 月 26 日参照).
- 東北大学災害科学国際研究所津波工学研究分野・ 原子力安全基盤機構:津波痕跡データベース, http://irides.tohoku.ac.jp/project/tsunami-db.html (2015 年 8 月 4 日参照).
- 6)東北地方太平洋沖地震津波合同調査グループ (2012):痕跡調査結果, http://www.coastal.jp/ttjt/ index.php?現地調査結果(2019年10月26日参 照).