海面近くの大気境界層における運動量, 顕熱輸送の直接測定

內 藤 玄 一*

国立防災科学技術センター平塚支所

Direct Measurements of Momentum and Sensible Heat Transfers in the Atmospheric Boundary Layer Near the Sea Surface.

By

Gen'ichi Naito

Hiratsuka Branch, National Research Center for Disaster Prevention No. 9-2, Nijigahama, Hiratsuka, Kanagawa-ken 254

Abstract

Wind and temperature fluctuations have been measured using a sonic anemometer and a thermocouple at the marine observation tower over the open sea. The statistical quantities of wind and temperature were computed, and the turbulent fluxes of momentum and sensible heat were determined by the eddy correlation method. The intensities of turbulence were $\sigma_u/\bar{u}=0.089$, $\sigma_w/\bar{u}=0.044$ and $\sigma_w/u_*=1.23$ at 6.4 m high. The drag coefficient at 10 m above the sea for the adiabatic conditions was $10^3C_D=0.36+0.118\bar{u}_{10}$ for $3<\bar{u}_{10}\leq 8$ m/s, and 1.01+ $0.036\bar{u}_{10}$ for $8 \text{ m/s}<\bar{u}_{10}$. For the vertical flux of sensible heat, the bulk transfer coefficient was $10^3C_H=1.10$ for $4 \text{ m/s}<\bar{u}_{10}$. Spectra and cospectra of turbulence were obtained. In the inertial subrange, the wind component spectra fall as -5/3 power of frequency, and the temperature spectra fall as -7/3 power. While the cospectra of momentum and sensible heat in the same range have the -7/3 power and -2.8 power slopes, respectively. The momentum flux estimates determined from eddy correlation technique and from dissipation technique were compared.

1. はじめに

大気と海洋は複雑な相互作用をしながら種々の形のエネルギーをたえず交換している.大気の運動エネルギーは吹送流や風波などの現象をひきおこし,また海面を通じて顕熱,水蒸気,大気放射などの熱エネルギーの輸送が行なわれる.そして海洋上におきるいろいろなスケールの現象は人間社会に少くない影響を及ぼし,沿岸霧,高波などのように,ときには大きな災害を伴う場合もある.

大気境界層における乱流構造の研究は時間的空間的にも比較的小さな規模の現象を研究す

^{*} 沿岸防災第二研究室

国立防災科学技術センター研究報告 第17号 1977年3月

るものであり、1950年代の初から観測手段やデータ処理法に大きな進歩がみられた. 風速変 動及び気温変動, 比湿変動の測定を行うことによって, 大気乱流による運動量, 顕熱, 蒸発 による潜熱の輸送を直接知ることが最も望ましい. しかしながら, 風速変動, とくに風速の 鉛直成分が野外で安定して測定できるようになったのは超音波風速計が開発されてからであ り (Mitsuta et al., 1967), それ以前は平均風速を用いて間接的に輸送量を推定するなどし た. また比湿の直接測定が可能な測器は未だ充分実用化されていない.

大気と海洋間の相互作用などを調べるための大規模な観測が近年実行されるようになった. GARP の下で計画されたものであるが、1969年に大西洋で行われた BOMEX, ATEX, 1974 年と 1975年に沖繩周辺海域で行われた AMTEX が代表的なものであり、それぞれ貴重な データが得られている.

また海岸地域の観測としては, Shiotani (1975) が強風時を中心として風の相関, パワー スペクトルなどの風の統計的性質を調べている.

2. 観 測

乱流輸送の測定は平塚海岸から約 1 km 沖合にある観測塔で行った. 測器の受感部は南寄 りの風を想定して観測塔の南側に取付けた. 相模湾は南に向って開かれた海であり,風の吹 送距離は南の方向では無限に長く,南西の方向でも約 40 km あるので,南よりの風のとき の海面近くの輸送量の測定の場合には,陸地から遠くはなれた海洋上での条件とよく似てい る. 潮沙によって水位が変るため,塔に固定された測器の海面からの高度は時々刻々変化す るが,測定した範囲は 5~15 m であり,波によって誘起される大気の乱れが小さいと考えら れる条件下でデータを採集した.

風速変動の測定は三次元超音波風速計(海上電機製, PAT-311)を使い,また気温変動を

測定するために、銅・コンスタンタン熱電対を使って、その出力を直流増巾器で 5×10⁴ 倍に増巾 した.熱電対の線径は 0.08 mm であるから、お よそ 3 Hz 程度の変動まで追従する.これらの測 器の受感部の取付け箇所は塔自体による気流の乱 れが無視できる程度に塔から離れていなければな らない.写真は測定中の超音波風速計と熱電対で ある.気温の絶対値を求めるために自金抵抗通風 乾湿計を海面から約 10 m の高さに取付けた.一 方表面水温は保護管付の自金抵抗体を小型のブイ で海面に浮かせて求めた.この方法で求めた水温 は海面下約 4 cm の層の平均値になる.

-190 -

風速変動及び気温変動は観測塔内の A-D 変換器でディジタル化されオンラインで陸上の 計算機 NEA C3200 に送られ集録される.そして種々の統計的な解析処理が行われる.変動 量の測定の採取間隔は 0.1 sec であり. 1 回の測定時間は 1,600 sec で連続測定が可能であ る. 但しパワースペクトル等の形を求めるときには一部のデータを 0.04 sec で読み取った.

2. 基本式

3.1 大気の安定度

運動量 (レイノルズ応力) τ と顕熱 H を風速 \bar{u} と気温 θ の鉛直 (z 方向) 分布から求め る場合,大気の条件が断熱状態でないときには安定度を表わす函数が必要となる. Businger (1966) は大気が不安定である場合とわずかに安定なときにこの方法を用いて輸送量を与えた. 安定度を含めた風速と気温の匂配は次のように表わされる.

$$rac{\partial ar{u}}{\partial z} = rac{u_{st}}{kz} arphi_{\scriptscriptstyle M}\!\left(rac{z}{L}
ight) \ rac{\partial ar{ heta}}{\partial z} = rac{T_{st}}{kz} arphi_{\scriptscriptstyle H}\!\left(rac{z}{L}
ight) \,.$$

ここで

 $u^* = (\tau/\rho)^{1/2}$, 摩擦速度, ho; 空気の密度, k = 0.42, Kármán 定数 $T_* = -\frac{H/\rho c_P}{u_*}$, c_P ; 空気の定圧比熱 $z/L = -\frac{kg \cdot H/\rho c_P}{\bar{\theta} u_*^3} \cdot z$, L; Monin · Obkov 長.

従って u_* , T_* を \bar{u} , $\bar{\theta}$ の鉛直分布から求めれば, 輸送量が与えられる.

安定度函数 φ_M , φ_H は多くの研究者によって提案されているが, Kondo (1975) が次のようにまとめている.

z/L≤0 のとき (不安定成層),

$$\varphi_{M} = (1 - 16 z/L)^{-1/4}$$

 $\varphi_{H} = (1 - 16 z/L)^{-1/2}$

z/L>0 のとき (安定成層),

$$\varphi_{\scriptscriptstyle M} = \varphi_{\scriptscriptstyle H} = 1 + 6 rac{rac{z}{L}}{1 + rac{z}{L}}$$

となる. 風速, 気温及び比温の鉛直分布を測定することにより知ることができる安定度函数 は NIFTI など輸送量を推定する他の方法にも用いられる.

3.2 渦相関法とスペクトル

風速変動 (u', v', w') と気温変動 θ' を同時に測定することによって、運動量 τ と顕熱 H を 求める方法を渦相関法という.

$$au = -
ho \overline{u'w'}$$
,
 $H =
ho c_P \overline{w'\theta'}$.

 u', θ' などをスペクトル分解して大気乱流の特性を調べることは輸送過程を知る上で重要なことである. 一般に鉛直方向に大気乱流によって輸送される物理量は、コスペクトル $C_{w\alpha}$ ($\alpha = u', \theta'$ etc.) でもって

$$\overline{w'lpha} = \int_0^\infty C_{wlpha}(n) dn$$
, n; 周波数

と表わされる.また乱れの強さを表わす分散 $\overline{\alpha'^2}$ も同様にパワースペクトル $P_{\alpha}(n)$ で

$$\overline{\alpha'^2} = \int_0^\infty P_\alpha(n) dn$$

と表わされる. これらの式の積分区間は現実には (0,∞) ではなくて, 測定時間と採取間隔 で上限と下限が決まる.

水平風速のパワースペクトルは波数 κ に対して慣性小領域では

 $P_u(\kappa) = A \varepsilon^{2/3} \kappa^{-5/3}$, (A=0.48, Kolmogoroff の定数) $\varepsilon = u_*^2 \frac{d\bar{u}}{d\tau}$, ε ; 粘性逸散率,

で表わされる. Taylor の渦凍結の仮定を用いると、 $\kappa = 2\pi n/\bar{u}$ であるから、安定度函数 φ_M を使って摩擦速度が導かれる.

$$u_{*}=1.97f^{1/3}\sqrt{nP_{u}(n)}\cdot\varphi_{M}^{-1/3},$$

$$f=nz/\bar{u}, \quad \text{m}\%\pi \text{Bigg} 3.$$
(1)

したがって風速変動のパワースペクトルを知ることによっても u_* を知り,運動量が計算される.

気温のパワースペクトルの慣性領域での波数 κ に対する減衰は未確定な要素もあるけれど も、一般に次の形で表わされる.

$$P_{ heta}(\kappa) = BN arepsilon^{-1/3} \kappa^{-5/3}, \qquad N = \overline{w' \theta'} \frac{d\overline{\theta}}{d\sigma}$$

B は Paquin and Pond (1971) によると 0.8 である. したがって, u_* と同様に T_* が導かれる.

$$T_* = 1.53 f^{1/3} \sqrt{n P_{\theta}(n)} \varphi_M^{1/6} \varphi_H^{-1/2}$$
(2)

u∗ は *w* のパワースペクトルを用いても (1) と同様に導くことができる.

3.3 バルク法

高さ z=a の風速 u_a の平均値を用いて τ の値を求めようとするとき, バルク法が広く利用される.

$$= \rho C_D \bar{u}_a^2 \tag{3}$$

C_D は抵抗係数で風速等によって多少異る.

 C_D を決定することは、 τ の \bar{u} や安定度z/Lに対する依存性を調べることと同一であり、 この常数を決定するために多くの研究がなされてきた. C_D は本来、海面の状態、即ち粗度高 によるものであり、風波の発達とともに大きくなる (Kondo *et al.*, 1972).

顕熱 H についても, τ と同様に表わされる.

$$H = -\rho c_P C_H \bar{u}_a(\theta_a - \theta_0)$$
(4)
 C_H ; 顕熱の抵抗係数 (スタントン数),

 θ_0 は海表面温度をさす. この方法は \bar{u} などの平均量でもって輸送量を知ることが出来るの で、観測条件が厳しい海洋上では非常に有用である. しかし直接測定した値と同じであるた めには、非断熱条件における C_p などの詳細な決定が必要となる.

4. 結 果

4.1 風速変度と気温変動の乱流特性

風速,気温等の測定値及び統計量を表 1, 2, 3 に示す.

風速の3成分 (u', v', w') と気温変動 θ の海面近くにおける統計的性質を調べる.

変動量 α の標準偏差 σ_{α} , 頻度分布の歪み及び尖りの度合を表す Skewness S, Kurtosis K はそれぞれ次のように定義される.

図1 風速の水平縦方向成分の標準偏差 σ_u と平均風速 ū の関係.
 ●: z=(6.4±0.4)m, ○: z=(12.5±0.4)m.

Fig. 1 Standard deviation of longitudinal wind component σ_u as a function of mean wind speed \bar{u} . $\bullet: z=(6.4+0.4) \text{ m}, \bigcirc: z=(12.5+0.4) \text{ m}.$

$$\sigma_{lpha} = \sqrt{\overline{lpha'^2}}$$
, $S = rac{\overline{lpha'^3}}{(\overline{lpha'^2})^{3/2}}$, $K = rac{\overline{lpha'^4}}{(\overline{lpha'^2})^2}$

 α' がガウス分布をしているとき、S=0, K=3となる.

図 1~3 に風速変動 (u', v', w') の標準偏差と平均風速との関係を示す. 図1は σ_u を \bar{u}

図 2 図1に同じ, 但し水平横方向の成分. Fig. 2 Same as Fig. 1 but for lateral wind component.

図3図1に同じ,但し鉛直方向の成分. Fig. 3 Same as Fig. 1 but for vertical wind component.

-194-

に対して $z=(12.5\pm0.4)$ m と, $z=(6.4\pm0.4)$ m の2高度について示したものである. 弱風 時で不安定な状態では σ_u は大きな値をとる. また \bar{u} が 10 m/s を越えると急に大きくなる 傾向をもつ. $\bar{u} < 10$ m/s で中立に近い状態のとき乱れの強さは,

$$\sigma_u/\bar{u}=0.089$$
, $z=6.4$ m (5)

となる. z=12.5 m では σ_u/\overline{u} は上記の値よりわずかに小さい.

図2は σ_v を \bar{u} に対して示したものである. σ_u に比べてかなりばらつく. これは v'に長い周期の変動が入るためと思われる. σ_u と同様に $\bar{u} > 10 \text{ m/s}$ では σ_v は急に大きくなる. 図3に σ_w を \bar{u} に対して示す. σ_v は \bar{u} が 10 m/s より大きくなっても σ_u のようには急激に大きくならない. z=6.4 m での乱れの強さは

$$\sigma_v/\bar{u}=0.060$$
, $\sigma_v/\bar{u}=0.044$, (6)

である. Miyake et al. (1970) の海上の測定では $\sigma_u/\bar{u}=0.92$, $\sigma_w/\bar{u}=0.047$ の値を得ている から今回の観測値はやや小さいが、良く一致しているといえる.

風速変動の頻度分布は一般にガウス分布で表わされるとされている. Skewness は u, v, w ともにほとんど0に近い. 一方 Kurtosis は u の場合,ガウス分布のときの K=3 より も少し小さい値をとり, w では少し大きく K=3.5 に近い値をとるときが多い. また Skewness Kurtosis の高さと風速の強さに対する依存性は認められない. 全体として海面近くの 風速はほぼガウス分布をしているとしてよい.

気温の乱れの標準偏差 σ_{θ} は気温と水温の差 4θ が大きくなるとともに大きくなるが、風速との関係が明瞭な形で表われない. Skewness, Kurtosis は水平風速 u に比べてバラッキの程度が大きいけれども、平均してガウス分布の値に近い.

4.2 運動量と抵抗係数 C_D

海面近くで測定される風速変動に は波によって誘起される気流の乱れ が入ってくる.この誘起成分の研究 は Kondo et al. (1972) らによって なされているが,今回の観測では誘 起成分を無視して解析する方針であ るので海面の極く近傍を除いた高度 で行った.塔の位置での潮汐の変化 は大きいときで,30分間に15 cm ぐ らいだから,測器の海面からの高さ は変化するけれども1回の測定時間 内では無視できる.測定高度は海面 より 5~15 m であるから鉛直輸送量

-195-

はこの気層で一定とみなしうる. 風速変動の共分散 $\overline{u'w'} (\equiv \tau/\rho)$ を z=10 m の 平均風速の 自乗 \overline{u}_{10}^{s} に対して示したのが図4で ある. 図より $\overline{u'w'}$ は \overline{u}_{10}^{s} が大 きくなるとともにほぼ線型に増 加するけれども,バラツキはか なり大きい.大気の安定度を考 慮して中立状態に近い条件の値 だけを図示しても,このバラツ キはあまり解消されず,運動量 輸送の本質的なものと思われる.

Fig. 5 Drag coefficient C_D as a function of wind speed \bar{u}_{10} . $\bullet: |z/L| \leq 0.1, \bigcirc: z/L < -0.1, \triangle: z/L > 0.1.$

図5は(3)で定義される抵抗係数 C_D を計算し \bar{u}_{10} に対して示したものである.各々の値 は安定度 z/L で分類した.図4の $\overline{u'w'}$ と同様に C_D もかなりばらつく.図中の曲線は中立 状態の値を近似したものである.Kondo (1975)は非断熱時の C_D を Nikuradse の実験のデ ータなどを基にして導いている.大気が中立時の C_D は多くの人たちによっていろいろな観 測条件において求められてきているが、以前は風速と共に大きくなる傾向をもつような報告 が多かった.しかし近年 τ が直接測定されるようになってから C_D が \bar{u}_{10} とともにあまり 変らない結果を示している報告が多い.

Deacon and Webb (1962) が平均風速の鉛直分布を用いる方法によって求めた結果をま

とめ $10^{3}C_{D}=1.0+0.07\bar{u}_{10}$ (\bar{u}_{10} : m/s 単位) を 出している. また Hasse (1970) は $10^{3}C_{D}=$ 1.21 ± 0.24 , Miyake *et al.* (1970) は渦相関 係法により $10^{3}C_{D}=1.10\pm0.18$ を報告してい る. 太西洋で行なわれた大規模実験 BOMEX の結果として Pond *et al.* (197s) は $10^{3}C_{D}=$ 1.52 を示した. 図6 に今回得られた結果と主 として C_{D} が \bar{u}_{10} とともに変る性質を示して いる他の研究者の結果と比較 して示す. Wu (1969) は室内実験によるものであり, 野外と の相似則が必ずしも充分ではないので厳密な 比較はできない.

今回求められた C_p の実験式は次のとうり である.

- 図 6 C_D の ū₁₀ に対する依存性の比較. ①: 今回の観測, ②: Kondo (1975), ③: Kondo, Fujinawa and Naito (1972), ④: Wu (1969).
- Fig. 6 Comparison of the dependency of C_D on \bar{u}_{10} . (1): Present observation, (2): Kondo (1975), (3): Kondo, Fujinawa and Naito (1972), (4): Wu (1969).

-196-

$$egin{aligned} 10^{3}C_{\mathcal{D}} &= 0.36 + 0.118 ar{u}_{10}$$
 , $3 &< ar{u}_{10} \leq 8 \, \mathrm{m/s} \ &= 1.01 + 0.036 ar{u}_{10}$, $8 \, \mathrm{m/s} < ar{u}_{10} \end{pmatrix}$ (7)

上式で分るように $u_{10}=8 \text{ m/s}$ までは風速が強くなると共に急速に 増加するけれども、この点を越え るとゆるやかに大きくなる. $\bar{u}_{10}=$ 10 m/s で $10^3C_p=1.4$ の値をとる.

鉛直方向の風速変動 w'の標準 偏差 σ_w を摩擦速度 u_* に対して 図7に示した.風速が弱く大気が 不安定なときは σ_w/u_* 非常に大き くなるが、この状態以外では C_D と \bar{u}_{10} の関係に比べてバラツキが 小さい、図中の近似線から

図 7 風の摩擦速度 u_{*} と風速,鉛直成分の標準偏差 σ_wの関係. ●: z=(6.4±0.4 m), ○: z=(12.5±0.4) m.
 Fig. 7 Friction velocity u_{*} as a function of standard deviation of vertical wind σ_w.

$$\frac{v_w}{u_{st}} = 1.23$$
, $z \doteq 6.4$ m. (8)

z = 12.5 m のとき σ_w/u_* は上記の値よりやや小さい値をとる. σ_w は大気の状態にあまり 影響されないで安定した値をとるため, (8) から σ_w を用いてレイノルズ応力 $\tau = \rho u_*^3$ を推定

図8 顕熱の共分散 $\overline{w'\theta'}$ をバルクパラメーター $\bar{u}_{10} d\theta$ に対して示したもの. •: $\bar{u}_{10} \ge 5 \text{ m/s}, \bigcirc: \bar{u}_{10} < 5 \text{ m/s}.$

Fig. 8 Covariance of heat flux plotted against the bulk aerodynamic parameter $\bar{u}_{10} \Delta \theta$. $\bullet: u \ge 5 \text{ m/s}, \bigcirc: u < 5 \text{ m/s}.$

国立防災科学技術センター研究報告 第17号 1977年3月

 \bigcirc : u < 3 m/s.

することができる.

(8) の値は Pond et al. (1971) の 1.32±0.09, McBean (1970) の 1.53±0.16, Miyake et al. (1970) の 1.47±0.26 に比べて少し小さい.

4.3 顕熱とスタントン数

気温変動 θ' と風速の鉛直成分 w' の共分散 $\overline{w'\theta'}$ ($\equiv H/\rho c_P$) を $\bar{u}_{10} \Delta \theta$ ($\Delta \theta \equiv \theta_{10} - \theta_0$) に対し て図8に示す. 運動量の場合と同様にかなりばらつく.大気が不安定な時 ($u_{10} \Delta \theta < 0$) には顕 熱は海面から大気へ供給されるが,黒潮の影響を強くうける日本列島南岸では一年間の大分

部の季節がこの条件になる. 図9 に $\bar{u}_{10}d\theta$ が小さいときの顕熱を拡 大して示す.図から $\bar{u}_{10}d\theta=0$ でも 正(鉛直上向き)の輸送量があるこ とが認められる. この事実は風速 がほとんど0になるような条件は ないため,海水温と気温が測定誤 差の範囲内で等しくなっても少量 であるが海から大気へ熱が供給さ れるということを意味する. この 点については海面からz=10 m ぐ らいの層の気温分布の正確な測定 を行わないと分らないけれども弱 風時に断熱状態にならない熱的構

-198-

造があると推定される.(4) で定義される顕熱の抵抗係数 (スタントン数) C_{H} を \bar{u}_{10} に対し て図 10 に示す. C_{H} は $d\theta$ で分類してもバラツキが大きく、 $|d\theta| < 5^{\circ}$ C で異る傾向が見出 せないため図では安定度で分けてない.図中の直線は中立に近い不安定な条件での近似を表 わす.図9 でみたように \bar{u}_{10} が小さくなっても鉛直上方に熱輸送があるということは C_{H} が $u_{10} < 4 \text{ m/s}$ で急に大きくなることに対応する.従って弱風時においては、即ち $u_{10}d\theta = 0$ の 近傍においては C_{H} 決められない.

図よりスタントン数は次のようになる.

$$10^{3}C_{H} = 1.10$$
 , $\bar{u}_{10} \ge 4 \,\mathrm{m/s}$ (9)

この値は Hasse (1970) の求めた $10^{3}C_{H}$ =1.0 とほぼ一致し, Pond *et al.* (1971) の値 $10^{3}C_{H}$ = 1.25±0.25 とも大差ないといえる. Kondo (1974) は弱風時には空気力学的に滑らかな海面 を考え C_{H} を \bar{u}_{10} とともに変化させているが、強風時には \bar{u}_{10} にほとんど関係なく $10^{3}C_{H}$ = 1.25 と与えている.

4.4 風速のパワースペクトル

Monin・Obkov の相似則によれば風速変動のパワースペクトルは,無次元周波数 $f(=nz/\bar{u})$ と安定度 z/L の関数で表わされる.

$$rac{nP_{lpha}(n)}{\sigma_{lpha}^2} = F_{lpha}\!\!\left(f,rac{z}{L}
ight), \qquad lpha = u', \, v', \, w'$$

パワースペクトルの低周波数領域は大気の安定条件に影響されるけれども慣性小領域ではいずれも $n^{-5/3}$ の形をとって減衰する.

海洋上での風速のパワースペクトルの観測例の代表的なものとして Miyake et al. (1970),

n(Hz)

0.01

「海面近くの大気境界層における運動量,顕熱輸送の直接測定一内藤

図 14 風速3成分の規格化パワースペクトル. Fig. 14 Normalized power spectra of three dimensional wind components.

Pond et al. (1971) がある. Miyake et al. のスペクトルは高い周波数域で n^{-5/3} よりも速 く減衰している. またKaimal et al. (1972) は内陸において広い範囲にわたった非断熱条件 下で測定し、実験式を示した、パクースペクトルを無次元化するとき、 o^a を用いないで u^{*}_{*} を用いる研究者が多いが、図4でみられるように渦相関法を求めたレイノルズ応力はかなり バラつくのが普通であり、 σ_w などよりも $\overline{u'w'}$ の方が一般に誤差が入り易いから u_*^* を用 いるのは必ずしも適当ではない.

図 11~18 に u, v, w のパワースペクトルを示す. 高周波数域では u, v, w のパワース ペクトルのほとんどすべての図において $nP_a(n) \propto n^{-2/3}$ が見出される.

-200 -

海面近くの大気境界層における運動量、顕熱輸送の直接測定一内藤

相似則 $f=nz/\overline{u}$ がなりたったとして、中立に近いときのパワースペクトルの形を求める と次の式で表わすことができる.

$$\frac{nP_u(n)}{\sigma_u^2} = \frac{36f}{(1+84f)^{5/3}}$$
(10)

$$\frac{nP_v(n)}{\sigma_v^2} = \frac{5.1f}{(1+14f)^{5/3}} \tag{11}$$

$$\frac{nP_w(n)}{\sigma_w^2} = \frac{1.2f}{1+11f^{5/3}}$$
(12)

u'のパワースペクトルは異った観測条件において低周波域でかなり違った形を示すため (10) では単純に平均値をとり求めた. また (11) を求めるとき, v' に非常に長い周期の変動 が存在する場合があるけれども, そのような Run は除外した. w' のパワースペクトルの形 は各々の Run であまり差がなく (12) でよく代表させられる. Kaimal et al. の陸上にお ける中立時の形は,

$nP_w(n)/u_*^2 = 2f/(1+5.3f^{5/3})$

を与えているから (8) を使って (12) の σ_w を u_* に変えて比較すると低周波域ではだいだ い一致するけれども, 慣性領域 (高周波域) では (12) の方が小さい.

4.5 気温のパワースペクトル

気温はスカラー量であるから慣性小領域で減衰する形は $P_{\theta}(n) \propto n^{-7/3}$ と考えられるけれど も、多くの観測者は風速と同様に $n^{-5/3}$ で減衰することを示している. 一方 Inoue (1974) は気温や湿度のパワースペクトルは $n^{-7/3}$ で減衰することを観測例から指摘している.

図 19~22 に気温のパワースペクトルを示す. 今回の観測からは高周波数で n^{-7/3} に近い 形が多く求められたが,低周波数域では単調な形をとってはいない. 高周波数域についてだ

0.0011

n (Hz)

図 20 図 19 に同じ.

Fig. 20 Same as Fig. 19.

け近似式を求めると次のようになる.

$$\frac{nP_{\theta}(n)}{\sigma_{\theta}^2} = 0.019 f^{-4/3}$$
(13)

4.6 運動量, 顕熱のコスペクトル

鉛直方向の輸送量の周波数分布を表わすコスペクトルを求めた. 図 23~26 は運動量と顕 熱の中立状態に近い時の規格化コスペクトル $nC_{uv}(n)/\overline{u'w'}$ と $nC_{w\theta}(n)/\overline{w'\theta'}$ を示す. 運動 量については下向きを正の値, 顕熱については上向きを正の値にとっている. これらの図より わかることは $\overline{u'w'}$ に関しては比較的一定した形をとっている. 高周波域では $C_{uv}(n)$ は $n^{-7/8}$ に従って減衰する. また風速変動が運動量の輸送に寄与する範囲は高度及び風速の強

国立防災科学技術センター研究報告 第17号 1977年3月

海面近くの大気境界層における運動量,顕熱輸送の直接測定一内藤

1.0

1.0

nCum(n)/uw

0.1

0.01

0.001[|] 0.01

01

n(Hz)

図 24 図 23 に同じ.

Fig. 24 Same as Fig. 23.

P. 4

Fig. 25 Normalized cospectra of heat flux.

さによるが $n \geq 2H_2$ では小さい.

顕熱のコスペクトルは運動量のように安定した形を示さない. そして高周波数域での減衰 は $C_{uw}(n)$ に比べて速い場合が多い.

 $C_{uw}(n)$ も Monin・Obkov の相似則に従って、無次元周波数fを用い中位に近いときの実 験式を求めると、次のようになる.

$$\frac{nC_{uw}(n)}{u'w'} = \frac{7.5f}{(1+11f)^{7/3}}$$
(14)

また $C_{w\theta}(n)$ は慣性小領域において

国立防災科学技術センター研究報告 第17号 1977年3月

$$\frac{nC_{w\theta}(n)}{\overline{w'\theta'}} \propto f^{1.8} \tag{15}$$

となる.

内陸における観測例 (Kaimal et al. (1971) として

が示さてていて,実験式中の指数は 2.4÷7/3 だから慣性領域での減衰の形は運動量について は今回の結果とよく一致している.顕熱のコスペクトルの高周波域における減衰は Kaimal *et al.*の結果より速い.

4.7 粘性逸散率から求めた u*

uのパワースペクトルは慣性小領域において $nPu(n) \sim n^{-2/3}$ が成立する.従って粘性逸散率 eを慣性小領域から求めることによって、運動量を求めることができる.即ち(1)を使ってパワースペクトルの図から u_* を計算する.

図 27 は渦相関法によって求めた $\overline{u'w'}$ に対して u_*^* を示したものである. 図から u_*^* の 方が $\overline{u'w'}$ より小さいことが分る. この方法で求めた u_* から抵抗係数 $C_{p=}(u_*/\bar{u}_{10})^2$ を計 算すると 4.2 節で与えたものよりも小さくなる. Kolmogoroff 定数として A=0.48を用い たのでこれより小さい値を用いる研究者もいるため厳密な比較はできないが, Dunckel *et al*.

(1974) は ATEX のデータを使って渦相関 法から求めたレイノルズ応力は, 粘性逸散 率を用いる方法よりも約 10% 大きいこと を示している.一方 Miyake et al. の結果 は逆に前者の方が小さい. ε を用いる方法 は長い周期の変動特性が反映されないため, 鉛直輸送を充分表わしているわけではない.

気温変動のパワースペクトルから (2) を 用いて u_* と同様に T_* を求めることが出 来る. しかしながら慣性小領域での減衰が $nP_{\theta}(n) \sim n^{-4/3}$ に近いことが示されたため, (12) を用いることが適当でない.

5. 結 論

風速変動の3成分及び気温変動を海上で

 u_*^2 と $-\overline{u'w'}$ の比較.

Fig. 27 Comparison of u_*^2 computed by the power spectrum of wind with -u'w'.

測定することによって次の事が明らかになった.

(1) 風速の乱れの強さは (5), (6) 及び (8) で表わされる. 風速変動及び気温変動の頻度 分布はほぼガウス分布をしている.

(2) 運動量と顕熱が渦相関法によって直接的に求められた. z=10m での抵抗係数とス タント数は (7) と (9) で表わされる.

表1 気象要素の測定値と統計量. u*, T* は渦相関法で求めた値.

Table 1 Summary of the data and fluctuation statistics. u_* and T_* are obtained from the eddy correlation method.

Run No.	Date & Time	Hight cm	${ar u \over { m cm/s}}$	$T_{10} - T_s$	z/L	$\overline{w' \theta'}_{ m cm/s^{\circ}C}$	$rac{\sigma_w}{\mathrm{cm/s}}$	$^{\sigma_{\theta}}_{^{\circ}\mathrm{C}}$	S_w	K_w	$S_{ heta}$	$K_{ heta}$
1	$1973. 8.20 \\ 13:49$	312	340	0.8	0.075	1	16.0	-	0.094	2.99	-	
2	15:25	302	300	1.1	0.213		16.0		0.103	3.14		
3	$\begin{array}{c} 8.21 \\ 10:40 \end{array}$	$278 \\ 143$	$\begin{array}{c} 206 \\ 200 \end{array}$	0	0	-	15.5		0.379	3.72		<u>1000</u>
4	13:10	296 —	288 —	0	0	-	15.3	-	0.318	3.44		-
5	15:00	$295 \\ 160$	$\begin{array}{c} 653 \\ 630 \end{array}$	-0.2	$^{-0.003}_{-0.002}$	-	$\begin{array}{c} 39.0\\ 40.4 \end{array}$		$\begin{array}{c} 0.047 \\ 0.187 \end{array}$	$\substack{3.53\\4.45}$		
6	$\substack{12.14\\14:45}$	$1361 \\ 526$	$\begin{array}{c} 640 \\ 580 \end{array}$	-5.1	$^{-0.367}_{-0.142}$	$\substack{4.21\\3.07}$	$\begin{array}{c} 47.8\\ 34.7\end{array}$	$\substack{0.16\\0.21}$	$\substack{0.50\\0.25}$	$\substack{3.52\\3.58}$	$\underset{-0.70}{\overset{1.36}{}}$	$5.11 \\ 3.46$
7	$12.17 \\ 13:32$	1362	660 	-4.6	-0.497	4.90	50.8	0.20	0.33	3.32	0.40	3.15
8	$\begin{array}{c} 12.21 \\ 11:46 \end{array}$	$1330 \\ 495$	$\begin{array}{c} 1050\\ 970 \end{array}$	-1.2	$-0.046 \\ -0.017$	$\substack{6.59\\3.97}$	$\begin{array}{c} 65.7\\ 41.6\end{array}$	$\substack{0.22\\0.25}$	$\substack{0.30\\0.31}$	$\substack{3.00\\3.32}$	$^{-0.36}_{-0.06}$	$3.56 \\ 2.83$
9	13:41	$1326 \\ 491$	$\begin{array}{c} 1025\\940 \end{array}$	-1.7	$-0.067 \\ -0.025$	$\substack{3.10\\2.15}$	$\begin{array}{c} 58.7\\ 49.4\end{array}$	0.19	$\substack{0.22\\0.19}$	$\substack{3.42\\3.69}$	$\substack{0.11\\-0.06}$	$2.84 \\ 3.02$
10	14:01	$\begin{array}{c}1327\\492\end{array}$	$\begin{array}{c} 1500 \\ 1370 \end{array}$	-1.5	$-0.025 \\ -0.009$	$2.38 \\ 2.64$	$\begin{array}{c} 73.1 \\ 66.6 \end{array}$	0.15	$\substack{0.01\\0.10}$	$\substack{3.41\\3.47}$	$\begin{pmatrix} 0 \\ -0.07 \end{pmatrix}$	$2.77 \\ 2.75$
11	14:21	$\begin{array}{c}1328\\493\end{array}$	$\begin{array}{c}1410\\1300\end{array}$	-1.2	$-0.022 \\ -0.008$	$2.12 \\ 2.05$	$58.2 \\ 57.4$	$\begin{array}{c} 0.13 \\ 0.14 \end{array}$	$\begin{array}{c} 0.10 \\ 0.26 \end{array}$	$\substack{3.29\\3.70}$	$\substack{-0.37\\0.30}$	$2.52 \\ 2.68$
12	14:41	$\begin{array}{c}1329\\494\end{array}$	$\begin{array}{c} 1450 \\ 1330 \end{array}$	-1.4	$-0.025 \\ -0.009$	$\begin{array}{c} 2.00 \\ 2.34 \end{array}$	$\begin{array}{c} 69.5\\ 64.9\end{array}$	$\begin{array}{c} 0.11 \\ 0.14 \end{array}$	$\substack{0.23\\0.25}$	$\substack{4.72\\3.83}$	$\begin{array}{c} 0.11 \\ 0.05 \end{array}$	$2.75 \\ 2.95$
13	17:20	$\begin{array}{c}1369\\534\end{array}$	$\begin{array}{c} 1180 \\ 1080 \end{array}$	-0.5	$-0.014 \\ -0.005$	2.67	$\begin{array}{c} 67.2\\51.0\end{array}$	$ \begin{array}{c} 0.09 \\ 0.13 \end{array} $	$\substack{0.31\\0.16}$	$\substack{3.25\\2.94}$	$\substack{0.33\\0.02}$	$\begin{array}{c} 2.94 \\ 2.90 \end{array}$
14	17:40	$1372 \\ 537$	$\begin{array}{c} 1025\\940 \end{array}$	-0.3	$ \begin{array}{r} -0.012 \\ -0.004 \end{array} $	$\begin{array}{c} 1.36\\ 1.60\end{array}$	$\begin{array}{c} 48.3\\ 38.3\end{array}$	$ \begin{array}{c} 0.08 \\ 0.13 \end{array} $	$\begin{array}{c} 0.22\\ 0.30\end{array}$	$\substack{3.13\\3.76}$	$\begin{array}{c} 0.56 \\ 0.02 \end{array}$	$3.26 \\ 2.97$
15	18:00	$1379 \\ 544$	$\begin{array}{c} 1130\\ 1030 \end{array}$	0	000	$\begin{array}{c} 1.21 \\ 1.70 \end{array}$	$\substack{42.1\\39.9}$	$\begin{array}{c} 0.08\\ 0.11\end{array}$	$\substack{0.32\\0.47}$	$\substack{3.92\\4.24}$	$^{0.63}_{-0.24}$	$\substack{3.29\\3.65}$
16	18:20	$1389 \\ 554$	$\begin{array}{c} 1180\\ 1080 \end{array}$	-0.2	$-0.005 \\ -0.002$	$\begin{array}{c} 1.63\\ 2.20 \end{array}$	$\begin{array}{c} 46.9\\ 46.4\end{array}$	$\begin{smallmatrix} 0.10\\ 0.14 \end{smallmatrix}$	$\begin{array}{c} 0.21 \\ 0.29 \end{array}$	3.32 3.70	$0.58 \\ -0.20$	$\begin{array}{c} 3.04 \\ 2.90 \end{array}$
17	$12.22 \\ 9:36$	$ \begin{array}{r} 1353 \\ 518 \end{array} $	$\begin{array}{c} 1730\\ 1590 \end{array}$	-4.7	$^{-0.056}_{-0.021}$	$9.20 \\ 6.08$	$74.6 \\ 67.8$	0.28	$\begin{array}{c} 0.26\\ 0.13\end{array}$	$3.39 \\ 3.41$	$^{-0.16}_{-0.017}$	3.28 2.84
18	11:08	$\begin{bmatrix} 1344 \\ 509 \end{bmatrix}$	$\begin{array}{c} 1590 \\ 1460 \end{array}$	-5.2		$15.25 \\ 7.90$		$ \begin{array}{c} 0.35 \\ 0.36 \end{array} $	$0.357 \\ 0.286$	$3.48 \\ 3.76$	$\substack{0.437\\0.367}$	$2.76 \\ 2.95$
19	11:35	$ \begin{array}{c c} 1342 \\ 507 \end{array} $	$1590 \\ 1460$	-5.6	$ \begin{array}{r} -0.080 \\ -0.030 \end{array} $	$15.75 \\ 8.17$	$ 84.5 \\ 71.2 $	$\begin{array}{c} 0.33 \\ 0.36 \end{array}$	$ \begin{array}{c} 0.386 \\ 0.302 \end{array} $	$3.46 \\ 3.70$	$\begin{array}{c} 0.332 \\ 0.224 \end{array}$	$\begin{array}{c} 2.54 \\ 2.61 \end{array}$
20	12:01	$ \begin{array}{r} 1339 \\ 504 \end{array} $	$\begin{vmatrix} 1570 \\ 1440 \end{vmatrix}$	-5.9	$ \begin{array}{ } -0.087 \\ -0.032 \end{array} $	$9.12 \\ 6.20$	$\begin{array}{c} 71.1 \\ 64.0 \end{array}$	$ \begin{array}{c} 0.29 \\ 0.31 \end{array} $	$ \begin{array}{c} 0.368 \\ 0.269 \end{array} $	$3.26 \\ 3.76$	$ \begin{array}{c} 0.380 \\ 0.439 \end{array} $	$2.89 \\ 3.02$

表 2 気象要素の測定値と鉛筆輸送量の共分散. u*, T* は渦相関法で求めた値.

Table 2 Summary of the data and covariances of vertical fluxes. u_* and T_* are obtained from the eddy correlation method.

Run No.	Date & Time	Height cm	$egin{array}{c} ar{u}\ { m cm/s} \end{array}$	$\left \begin{array}{c} T_{10} - T_s \\ {}^{\circ} C \end{array} \right $	z/L	$\left \begin{array}{c} \overline{u'w'} \\ \mathrm{cm}^2/\mathrm{s}^2 \end{array} \right $	$\begin{vmatrix} \overline{w'\theta'} \\ \mathrm{cm/s} \cdot ^{\circ}\mathrm{C} \end{vmatrix}$	$\begin{vmatrix} u_* \\ cm/s \end{vmatrix}$	$\overset{T_*}{\circ_{\mathrm{C}}^{\mathrm{C}}}$
22	$1974. \begin{array}{c} 7.23 \\ 11:40 \end{array}$	$1306 \\ 560$	$\begin{array}{c}1192\\812\end{array}$	-0.9	$ \begin{array}{ } -0.021 \\ -0.023 \end{array} $	-	1.26	-	-
23	18:26	$\begin{array}{c} 1210\\ 464 \end{array}$	$991 \\ 745$	-0.8	$ \begin{array}{ } -0.026 \\ -0.021 \end{array} $	_	0.69		
24	$\begin{array}{c} 7.25\\ 13:49\end{array}$	1276	677	0.6	-0.061	-	0.41	-	-
25	$7.26 \\ 13:11$	1256	1107	1.9	0.050	1474	0.592	38.3	0.0145
26		$1280 \\ 534$	827 759	-0.9	$\begin{vmatrix} -0.052 \\ -0.026 \end{vmatrix}$	879 524	$1.368 \\ 1.316$	$29.6 \\ 22.8$	$\begin{array}{c} 0.0462 \\ 0.0577 \end{array}$
27	$8.12 \\ 13:22$	1260	776	-0.7	-0.046	815	0.861	28.5	0.0302
28	17:29	1259	800	-0.5	-0.030	935	1.104	30.5	0.0361
29	$\begin{array}{c} 8.13 \\ 11:30 \end{array}$	1261	839	-0.9	-0.048	846	1.104	29.0	0.0379
30	15.21	$\begin{array}{c} 1256 \\ 510 \end{array}$	$\begin{array}{c}1048\\946\end{array}$	-0.9	$-0.027 \\ -0.014$	$1587 \\ 1061$	1.435	$\substack{39.8\\32.5}$	0.0360
31		1210	403	0.1	0.044	100	0 534	10 0	0.0534
32	21:40	1874	485	-0.2	-0.055	209	0.454	14.4	0.0315
33	22:07	1274	417	-0.2	-0.084	135	0.341	12.3	0.0277
34	$\substack{8.22\\16:10}$	1253	473	0.6	0.177	210	0.483	14.4	0.0335
35	16:44	1253	433	0.6	0.226	142	0.288	11.9	0.0242
36	17:18	1253	498	0.6	0.148	344	0.555	18.5	0.0300
37	17:52	1253	516	0.6	0.133	292	0.614	17.0	0.0361
38	19:45	1216	471	0.6	0.179	124	0.666	11.1	0.0600
39	22:13	1260	526	0.5	0.105	306	-	17.4	
40	$8.25 \\ 16:45$	1268	1516	0.9	0.010	3260		57.0	-
41	19:20	1250	1781	1.3	0.010	3993	*	63.1	
42	21:20	1248	1889	1.6		4550	-	67.4	
43	$\substack{12.17\\14:45}$	198	412	-8.4	-0.57	337	2.25	18.3	0.1229
44	$12.24 \\ 15:15$	$367 \\ 217$	$\begin{array}{c} 574 \\ 560 \end{array}$	-5.3	$-0.25 \\ -0.16$	585 587	3.08	$\substack{24.1\\24.2}$	0.1278
45	15:45	$370 \\ 220$	$\begin{array}{c} 720 \\ 707 \end{array}$	-3.3	$-0.079 \\ -0.050$	777 808	2.94	$27.8 \\ 28.4$	0.1057
46	$\begin{array}{c} 1975. \ 4.29 \\ 13:12 \end{array}$	695 606	$775 \\ 700$	0.9	$\begin{array}{c} 0.032\\ 0.039\end{array}$	$326 \\ 327$	$\begin{array}{c} 0.293 \\ 0.305 \end{array}$	$\begin{array}{c} 18.0 \\ 18.0 \end{array}$	$0.0162 \\ 0.0169$
47	$5.2 \\ 17:22$	660	760	0.5	0.018	448	0.089	21.1	0.0042
48	5.59:30	549	1017	4.9	0.070	1598	-1.303	39.9	-0.0333
49	15:00	$\begin{array}{c} 642 \\ 551 \end{array}$	$\begin{array}{c} 1469 \\ 1424 \end{array}$	6.6	$\begin{array}{c} 0.038\\ 0.040\end{array}$	$\begin{array}{c} 3451\\ 3814 \end{array}$	$-4.29 \\ -6.40$	$\begin{array}{c} 58.7 \\ 61.7 \end{array}$	$-0.0730 \\ -0.1037$
50	$\begin{array}{c} 6.9\\ 15:40 \end{array}$	627	544	-1.2	-0.11	306	0.769	17.4	0.0441

Run No.	Data & Time	Height cm	${ar u \over { m cm/s}}$	$T_{10} - T_s$ °C	z/L	$\overline{u'w'}_{ m cm^2/s^2}$	$\overline{w'\theta'}_{\mathrm{cm/s}\cdot^{\circ}\mathrm{C}}$	u_* cm/s	r_{*}^{C}
51	$1975. \ 6.16 \ 15:00$	676	284	1.1	1.58	38	0.427	6.2	0.0690
52	$\substack{6.17\\15:52}$	667	549	0	0	325	0.038	18.0	0.0021
53	$6.24 \\ 16.10$	629	539	-0.9	-0.088	470	0 525	21 6	0 0243
54	16:37	627	529	-0.6	-0.065	317	0.326	17.8	0.0183
55	17:04	625	466	-0.6	-0.092	199	0.371	14.1	0.0263
56	17:31	624	378	-0.6	-0.16	132	0.225	11.4	0.0197
57	17:58	623	407	-0.8	-0.18	152	0.581	12.3	0.0472
58	18:25	622	359	-0.6	-0.18	142	0.420	11.9	0.0352
59	18:52	620	295	-0.5	-0.27	152	0.385	12.3	0.0313
60	19:19	619	266	-0.3	-0.20	62	0.322	7.8	0.0409
61	$\begin{array}{c} 6.27 \\ 14:32 \end{array}$	672	315	-0.8	-0.40	129	0.439	11.3	0.0388
62	$\begin{array}{c} 6.29 \\ 16:30 \end{array}$	677	492	-1.9	-0.27	—	1.068	_	; ;—-:
63	16:57	675	430	-1.6	-0.33		0.483	3 (-
64	17:24	673	374	-1.9	-0.56		1.510		(a) (a)
65	17:51	671	403	-2.0	-0.49	159	1.060	12.6	0.0841
66	18:18	669	365	-1.7	-0.53	210	0.883	14.4	0.0613
67	$7.1 \\ 17:58$	642	662	-1.1	-0.059	389	-	19.7	
68	18:25	640	626	-1.1	-0.070	439	10000	20.9	-
69	18:52	638	581	-1.1	-0.088	374		19.3	-
70	$7.6 \\ 13:33$	624	1020	2.1	0.034	1188	-0.935	34.4	-0.0271
71	14:00	620	908	2.1	0.044	765	-0.638	27.6	-0.0231
72	14:27	616	794	2.0	0.059	647	-0.237	25.4	-0.0093
73	14:54	612	816	2.2	0.061	674	-0.126	25.9	-0.0048
74	15:21	608	810	1.9	0.052	685	-0.287	26.1	-0.0109
75	15:48	611	840	2.2	0.056	1002	-0.342	31.6	-0.0108
76	16:15	614	827	2.4	0.064	839	-1.003	28.9	-0.0347
77	16:42	616	918	2.2	0.045	1151	-0.341	33.9	-0.0100
78	7.72:58	602	818	1.5	0.041	1046	-0.195	32.3	-0.0060
79	3:25	605	815	1.5	0.041	934	-0.165	30.5	-0.0054
80	3:52	608	771	1.5	0.047	746	-0.146	27.3	-0.0053
81	$\begin{array}{c} 7. 9 \\ 11:50 \end{array}$	700	130	1.4	0	7	-0.009	2.7	-0.0033
82	$1975. \ 7.11 \\ 2:45$	617	1075	2.9	0.036	1383	-0.913	37.1	-0.0246
83	3:12	613	982	2.8	0.048	980	-0.317	31.3	-0.0101
84	3:39	610	952	2.9	0.053	1176	-0.541	34.2	-0.0158
85	4:06	607	961	3.0	0.055	1898	-0.421	43.5	-0.0096
86	4:33	604	1024	2.9	0.044	1475	-0.778	38.4	-0.0202

Table 2 (Continued)

Run No.	Data & Time	Height cm	${ar u \over { m cm/s}}$	$\left \begin{array}{c} T_{10} - T_s \\ ^{\circ} \mathrm{C} \end{array} \right $	z/L	$\overline{u'w'}_{ m cm^2/s^2}$	$\overline{w' \theta'}_{\mathrm{cm/s}\cdot^{\circ}\mathrm{C}}$	u_* cm/s	$\overset{T_*}{\overset{\circ}{ m C}}$
87	$1975. 7.11 \\ 5.00$	602	1055	2.6	0.036	1379	-0.365	37 1	_0_0098
88	5:27	603	969	2.6	0.045	1077	-0.119	32.8	-0.0036
89	5:54	605	1001	2.7	0.044	1421	-0.500	37.6	-0.0132
00	7.22	000	1001	2.1	0.011		0.000	01.0	0.010
90	13:58	648	350	-2.3	-0.782	125	1.399	11.1	0.1260
91	16:08	602	262	-1.2	-0.769	103	0.358	10.1	0.0354
92	$\begin{array}{c} 7.23 \\ 10:31 \end{array}$	727	304	-2.1	-1.237	195	0.616	13.9	0.0443
93	10:58	727	247	-1.3	-1.115	51	0.605	7.1	0.0852
94	14:00	621	321	-1.6	-0.691	86	0.222	9.2	0.0241
95	14:27	621	336	-0.4	-0.148	112	0.302	10.5	0.0287
96	17:08	590	466	-0.9	-0.131	293	0.408	17.1	0.0238
97	17:35	590	450	-1.3	-0.209	218	0.200	14.8	0.0135
02	7.27	700	500	1 1	0.050	419	0.471	90.9	0 0999
98	12:00	700 609	509	-1.1	0.055	945	0.411	19 6	0.0232
99 100	13:44	696	004 605		0.017	040 455	0.008	10.0 91.9	0.0320
100	13.49	670	090	-0.8	0.040	400	0.400	21.5	0.0226
101	14.10	647	709	-0.7	-0.025	071	0.505	23.5	0.0125
102	15:20	647	002	0.6	0.025	909 777	0.074	97 Q	0.0217
103	10:00	047	804 751	-0.6	0.018	091	0.200	21.9 90 0	0.0102
104	16:22	041 647	731	-0.5		061	0.119	20.0	0.0041
105	2 10	041	140	-0.5	-0.019	901	0.004	51.0	0.0154
106	17:31	602	836	-1.5	-0.039	966		31.1	·
107	18:00	604	755	-1.1	-0.038	782		28.0	-
108	18:30	611	691	-1.3	-0.059	638		25.3	-
109	19:00	619	678	-1.8	-0.086	800	-	28.3	-
110	20:00	634	711	-1.2	-0.051	822		28.7	
111	20:30	642	678	-1.4	-0.070	497	<u> </u>	22.3	
112	$8.20 \\ 13:30$	642	914	-0.6	-0.013	1101	_	33.2	
113	14:00	634	850	-0.6	-0.016	874	-	29.6	
114	14:30	619	787	-0.6	-0.018	903	-	30.1	-
115	15:00	609	872	-1.0	-0.023	993		31.5	
116	15:30	600	865	-0.7	-0.016	1106	-	33.3	3 2
117	16:00	595	874	-0.7	-0.015	1047		32.4	
118	16:30	592	925	-0.7	-0.014	1230		35.1	
119	17:00	590	890	-0.5	-0.011	1335		36.5	
100700	10.21			0.000	10494.0469				
120	15:30	595	518	-1.2	-0.125	87		9.3	-
121	16:00	595	434	-1.0	-0.179	56	-	7.5	2
122	$\begin{array}{c} 12.16 \\ 16:55 \end{array}$	650	1454	-7.9	-0.051	2674	_	51.7	-
123	17:22	650	1411	-8.1	-0.058	3443		58.7	-

Table 2 (Continued)

Run No.	Date & Time	Height cm	${ar u \over { m cm/s}}$	$\left \begin{array}{c} T_{10} - T_s \\ ^{\circ} \mathrm{C} \end{array} \right $	z/L	$\overline{u'w'}_{ m cm^2/s^2}$	$\overline{w'\theta'}_{\mathrm{cm/s}\cdot^{\circ}\mathrm{C}}$	$u_* \atop { m cm/s}$	T_* °C
124	$1975.12.17 \\ 15:35$	593	300	-9.8	-4.835	95	4.33	9.7	0.4464
125	$12.19 \\ 12:17$	645	193	-10.0	-6.50	54	3.05	9.7	0.4121
126	12:44	638	243	-9.7	-7.457	5	1.19	2.2	0.5409
127	13:11	630	326	-9.4	-3.968	214	2.84	14.6	0.1945
128	$12.22 \\ 12:12$	658	1073	-5.1	-0.077	_	9.12	<u> 1997</u>	
129	12:39	660	835	-4.9	-0.129		4.72	10000	
130	13:06	663	1179	-4.7	-0.059		4.41		
131	13:33	658	1312	-4.8	-0.044		7.68	•	-
132	15:29	643	1344	-6.6	-0.055	2888	8.97	53.7	0.1670
133	15:56	640	1356	-6.8	-0.057	3840	10.89	62.0	0.1756
134	16:23	638	1364	-6.9	-0.055	3017	9.45	54.9	0.1721
135	16:50	635	1256	-7.0	-0.049	2696	11.94	51.9	0.2300
136	17:19	632	1170	-7.1	-0.081	1595	8.70	39.9	0.2180
137	$12.25 \\ 12:34$	648	335	-9.2	-3.577	56	3.60	7.5	0.4800
138	13:01	646	343	-8.6	-3.083	135	5.52	11.6	0.4758
139	13:28	644	337	-8.2	-3.142	76	3.81	8.7	0.4379
140	$1976. \ 1. \ 8 \\ 9:49$	600	1335	-1.0	-0.008	2928	3.56	54.1	0.0658

Table 2 (Continued)

表 3 風速変動と気温変動の統計量. Table 3 Statistical quantities of wind and temperature fluctuations.

Run No.	$rac{\sigma_u}{ m cm/s}$	$rac{\sigma_v}{\mathrm{cm/s}}$	$\mathrm{cm/s}^{\sigma_w}$	$^{\sigma_{\theta}}_{^{\circ}\mathrm{C}}$	S_u	S_v	S_w	$S_{ heta}$	K_u	K_v	K_w	$K_{ heta}$
22	121.6	81.0	31.9	0.09	0.10	0.27	0.38	-0.22	2.96	2.62	3.40	3.25
23	74.9	55.2	31.2	0.045	0.77	-0.11	-0.062	0.088	5.15	3.25	2.95	3.08
24	45.1	30.2	23.2	0.09	-0.14	0.045	0.138	0.244	3.14	3.14	2.97	2.26
25	64.0	48.3	37.3	0.054	-0.10	0.066	0	-0.237	3.43	2.95	3.16	3.56
26	$57.7 \\ 64.6$	$rac{36.4}{35.8}$	$28.5 \\ 25.7$	$\begin{array}{c} 0.105 \\ 0.128 \end{array}$	$^{-0.27}_{-0.32}$	$\begin{array}{c} 0.003 \\ 0.095 \end{array}$	$-0.157 \\ 0.269$	$-0.005 \\ -0.077$	$\substack{2.62\\2.52}$	$\substack{3.09\\3.21}$	$\substack{3.14\\3.16}$	$2.88 \\ 2.89$
27	54.0	39.8	27.1	0.072	0	0.036	-0.173	0.004	2.83	3.24	3.24	2.76
28	49.1	40.8	26.9	0.053	-0.145	0.031	-0.30	0.188	2.95	2.83	3.25	3.15
29	$\begin{array}{c} 60.5 \\ 61.5 \end{array}$	$\substack{39.7\\41.0}$	$\begin{array}{c} 30.9\\ 31.2 \end{array}$	0.084	0.086	0.057	-0.057	-0.037	2.82	2.90	3.19	2.69
30	$78.9 \\ 76.6$	$\begin{array}{c} 52.9 \\ 55.4 \end{array}$	$\substack{47.2\\42.2}$	0.078	$-0.134 \\ -0.023$	$\substack{0.124\\-0.023}$	$-0,017 \\ 0.170$	0.45	$\substack{2.62\\2.99}$	$\substack{3.47\\2.99}$	$\substack{3.21\\3.28}$	2.92
31	38.9	29.2	18.8	0.108	-0.055	-0.004	0.527	-0.45	2.76	3.06	2.73	3.04
32	45.7	26.5	17.1	0.052	-0.14	-0.36	-0.22	0.06	2.30	3.15	2.99	2.65
33	36.0	20.9	14.9	0.049	-0.04	-0.09	-0.26	0.18	2.98	2.55	2.96	2.68
34	37.2	-	15.3	0.10	-0.11		-0.40	-0.50	2.52	-	3.47	3.99
35	41.4	28.6	13.0	0.088	0.54	-0.23	-0.38	-0.51	2.74	3.25	3.95	3.40

Run No.	$rac{\sigma_u}{ m cm/s}$	$\left \begin{array}{c} \sigma_v \ \mathrm{cm/s} \end{array} \right $	$\left \begin{array}{c} \sigma_w \\ \mathrm{cm/s} \end{array} \right $	$\overset{\sigma_{\theta}}{^{\circ}\mathrm{C}}$	S_u	S_v	S_w	S_{θ}	K_u	K_v	K_w	K_{θ}
36	44.5	_	16.7	0.093	-0.28		-0.38	-0.39	2.67	-	3.50	3.44
37	39.8		15.8	0.088	0.15		-0.27	-0.36	2.59	****	3.19	3.37
38	43.1		15.6	0.148	0.24		-0.38	0.83	2.88	_	3.29	3.81
39	62.8	25.4	16.1		-0.57	-0.10	-0.41	1.000	2.85	2.82	3.83	
40	176.0	98.0	104.0		0.26	0.19	0.17		3.02	3.02	3.11	
41	183.9	117.6	142.7		0.15	0.02	0.33	-	3.09	3.81	4.15	-
42	181.1	119.5	147.6	_	0.016	0.047	0.21		2.81	3.12	3.01	
44	$\substack{122.2\\116.3}$	83.5 86.8	$\begin{array}{c} 23.7 \\ 22.0 \end{array}$	0.301	$^{-0.54}_{-0.48}$	$\substack{0.23\\0.24}$	$0.29 \\ 0.33$	0.16	$\substack{2.41\\2.43}$	$2.28 \\ 2.41$	$3.35 \\ 3.61$	2.75
45	$93.9 \\ 97.7$	$\frac{85.5}{86.7}$	$37.7 \\ 38.5$	0.269	$^{-0.078}_{-0.31}$	$\begin{array}{c} 0.20\\ 0.33\end{array}$	$\begin{array}{c} 0.14 \\ 0.16 \end{array}$	0.056	$2.75 \\ 2.77$	$2.78 \\ 2.86$	$\substack{3.45\\3.48}$	2.70
46	${}^{60.6}_{59.2}$	$\frac{46.1}{-}$	$30.4 \\ 30.7$	$\begin{array}{c} 0.059 \\ 0.056 \end{array}$	$^{-0.095}_{-0.098}$	-0.021	$\begin{array}{c} 0.071 \\ 0.081 \end{array}$	$\substack{0.75\\0.21}$	$\substack{2.61\\2.63}$	2.81	$\substack{3.40\\3.45}$	$\substack{4.13\\2.68}$
47	67.3	42.9	32.7	0.096	-0.073	0.025	0.133	0.035	2.79	2.64	3.40	3.28
48	114.4	-	49.5	0.399	0.20	1000	0.109	0.13	2.88	-	3.67	3.12
49	$\substack{162.0\\165.1}$	$\begin{array}{c} 123.4 \\ 131.1 \end{array}$	$74.5 \\ 75.3$	$\substack{0.441\\0.506}$	$\begin{array}{c} 0.109 \\ 0.141 \end{array}$	$\begin{array}{c} 0.058\\ 0.015\end{array}$	$\begin{array}{c} 0.045 \\ 0.062 \end{array}$	$^{-0.46}_{-0.38}$	$\begin{array}{c} 2.74 \\ 2.78 \end{array}$	$\substack{3.02\\3.04}$	$egin{smallmatrix} 3.35 \ 3.39 \ \end{split}$	$\substack{3.04\\2.79}$
50	66.6	57.1	25.4	0.292	0.382	0.007	0.374	0.843	2.74	2.46	3.62	3.02
51	38.2	33.3	15.4	0.111	0.82	-0.010	0.231	-0.218	3.87	2.44	3.03	3.08
52	64.9	39.0	29.8	0.29	-0.46	0.046	-0.046	0.86	2.73	3.43	3.81	2.94
70	82.1	48.5	41.2	0.134	0.105	0.057	0.163	0.089	2.88	3.08	3.20	2.75
71	78.2	46.5	37.8	0.106	-0.129	-0.109	0.158	-0.119	2.71	3.16	3.50	2.98
72	57.0	47.0	32.7	0.470	-0.102	0.078	-0.010	0.500	2.91	2.99	3.33	1.58
73	63.3	58.9	33.0	0.242	-0.193	-0.046	-0.017	0.546	3.11	3.04	3.32	2.84
74	69.0	43.4	35.3	0.102	0.045	-0.080	0.163	-0.100	2.81	3.21	3.64	3.10
75	73.9	49.1	38.2	0.077	0.025	-0.010	0.107	-0.134	2.83	3.39	3.45	2.89
76	74.2	86.8	36.2	0.147	0.159	-0.236	-0.066	0.071	2.75	2.49	3.43	3.11
77	78.8	58.4	41.6	0.101	0.184	0.113	0.180	-0.909	3.65	3.08	3.62	5.58
78	70.3	40.6	40.0	0.048	-0.025	0.432	-0.020	-0.282	2.65	3.66	3.40	3.15
79	69.2	40.1	38.3	0.050	-0.103	0.452	0.102	-0.103	2.81	3.42	3.43	5.81
80	63.6	42.2	34.8	0.047	0.069	0.422	0.055	-0.365	3.05	2.81	3.04	2.92
81	49.9	38.3	7.9	0.39	0.301	0.364	-0.161	0.063	1.81	2.64	2.86	2.39
82	133.4	67.0	50.1	0.125		-0.199	-0.148	0.362	-	3.06	3.55	2.88
33	106.6	57.8	45.1	0.128		-0.125	0.208	0.694		3.27	3.83	3.97
84	112.1	85.9	47.9	0.148		-0.005	0.162	0.247		2.68	3.58	2.87
85	131.5	107.2	50.2	0.154	-	-0.049	-0.038	0.424		2.73	3.90	2.78
86	114.7	97.1	52.3	0.155	0.578	-0.288	-0.030	0.678	3.87	2.84	3.64	4.02
87	98.5	81.5	52.3	0.121	0.147	-0.099	0.099	0.408	3.08	3.09	3.29	3.71
88	93.0	79.4	49.1	0.115	0.365	-0.117	0.117	0.755	3.09	3.09	3.60	3.70
89	113.0	114.8	55.3	0.168	0.344	-0.074	0.119		3.57	2.66	3.42	
90	38.2	25.9	16.5	0.681	-0.083	0.69	0.389	-0.87	1.99	3.20	3.94	2.28
91	28.5	24.3	15.8	0.161	-0.259	0.157	0.460	-0.42	2.64	2.57	3.23	2.48
92	24.0	25.0	21.6	0.148	-0.406	0.533	0.393	-0.029	3.06	2.78	3.14	3.55
93	27.8	30.7	19.1	0.297	-0.129	-0.039	0.292	-0.418	3.10	2.23	3.47	2.19

Table 3 (Continued)

Run No.	$rac{\sigma_u}{ m cm/s}$	$\operatorname{cm/s}^{\sigma_v}$	${\sigma_w \over { m cm/s}}$	$^{\sigma_{\theta}}_{^{\circ}\mathrm{C}}$	S_u	S_v	S_w	$S_{ heta}$	K_u	K_v	K_w	K_{θ}
94	27.1	33.2	10.6	0.157	0.038	-0.257	0.515	-0.571	3.29	2.18	3.78	3.45
95	33.2	31.1	11.4	0.120	-0.236	-0.329	0.298	-0.332	2.46	3.31	3.61	3.33
96	39.2	-	21.2	0.113	-0.117		0.255	-0.529	2.64		3.34	3.04
97	31.1	26.5	19.2	0.199	-0.355	0.200	0.331	-0.371	2.79	2.96	3.52	1.87
98	50.8	51.0	24.3	0.244	-0.139	0.065	0.212	-0.677	2.46	2.16	3.47	3.41
99	54.4	37.2	24.7	0.225	0.052	0.092	0.160	-0.965	2.56	2.92	3.48	3.25
100	52.7	34.2	25.7	0.614	-0.095	0.172	0.158	-0.630	2.78	3.16	3.63	1.86
101	84.5	40.0	33.1	0.526	-0.203	0.174	0.088	0.721	2.67	2.99	3.68	2.11
102	75.2	41.4	35.3	0.650	0.004	0.037	0.056	0.478	2.56	3.20	3.37	1.76
103	69.1	43.5	36.7	0.082	-0.012	-0.206	0.063	0.463	2.64	3.08	3.67	3.37
104	61.9	42.4	34.5	0.361	-0.079	0.117	0.107	0.360	2.62	3.13	3.51	1.55
105	67.2	46.1	35.4	0.318	0.051	0.033	0.081	-0.108	2.65	3.18	3.30	1.71
106	85.2	71.3	36.0	10000	0.062	0.510	0.062		2.75	2.65	3.50	10-11 10-11
107	71.1	47.6	31.2		0.085	0.250	-0.017	_	2.69	3.07	3.46	-
108	55.5	56.5	30.1		-0.001	0.224	-0.013		2.57	2.32	3.27	
109	55.2	65.1	32.3		-0.002	0.379	-0.038		2.66	2.63	3.41	-
110	70.4	50.1	33.2	-	-0.425	0.107	-0.135	A <u>ttan</u>	4.54	3.23	3.29	-
111	62.5	46.4	29.2	•••	-0.090	0.032	0.095		3.03	3.28	3.73	
112	98.9	60.0	40.8	8 000 8	0.125	-0.366	0.025		2.68	3.30	3.36	
113	86.7	52.6	37.2	-	0.178	-0.096	0.058		2.78	3.35	3.57	-
114	68.9	46.0	34.5		0.005	-0.300	0.065	-	2.69	2.97	3.26	
115	80.9	50.3	38.1	-	0.010	-0.123	0.091		2.85	3.56	3.67	-
116	76.7	48.8	38.5	-	-0.012	-0.536	-0.124		2.67	3.83	3.52	
117	78.8	53.4	37.5	(1997) A.	0.019	-0.134	0.060		2.58	3.30	3.74	
118	85.4	53.8	40.3	-	-0.007	-0.100	-0.030	-	2.70	3.27	3.47	
119	84.7	46.4	39.2		-0.086	-0.009	0.107	-	2.78	3.90	3.48	
120	48.0	57.2	64.9	-	0.039	0.158	0.362	_	2.87	2.06	3.71	-
121	47.1	64.6	55.3	\sim	-0.183	0.449	0.230		2.61	2.37	3.38	
122	167.2	145.4	71.0		-0.108	0.273	0.032		3.10	3.60	3.53	
123	170.9	156.5	68.6		-0.293	0.868	0.150	-	3.02	3.75	3.50	-
124	85.9	111.3	37.3	0.529	0.166	0.519	0.368	-	3.64	2.68	3.85	
125	37.2	34.2	23.7	0.608	0.017	-0.478	0.557	1.614	2.60	3.01	3.59	5.34
126	39.7	39.9	25.7	0.497	0.368	-0.055	0.223	1.667	3.84	2.67	3.31	5.47
127	67.7	43.0	28.3	0.552	0.230	-0.059	0.241	0.941	3.09	3.07	4.05	3.93
128	\sim		47.7	0.314		10000	0.264	-0.015		*	4.09	2.94
129	-	-	45.2	0.225	-	-	0.215	0.384			3.55	2.71
130	()		55.8	0.233			0.035	0.221			3.62	3.03
131			61.9	0.263	-		-0.093	0.407			4.33	3.49
132	143.2	144.8	65.5	0.274	-0.211	-0.119	-0.095	0.275	2.53	3.03	4.35	3.11
133	151.2	148.8	69.5	0.283	-0.542	-0.057	-0.311	0.378	2.59	3.17	5.30	3.04
134	137.1	124.1	62.5	0.270	-0.808	0.147	0.087	0.298	2.95	3.19	3.81	3.30
135	160.9	163.4	59.8	0.315	-0.119	-0.196	0.252	0.326	2.08	3.24	3.72	2.98
136	194.7	173.8	56.8	0.286	0.172	-0.213	0.119	0.451	2.01	2.44	3.77	3.09

Table 3 (Continued)

Run No.	$\operatorname{cm/s}^{\sigma_u}$	$rac{\sigma_v}{ m cm/s}$	$rac{\sigma_w}{ m cm/s}$	$^{\sigma_{\theta}}_{^{\circ}\mathrm{C}}$	S_u	S_v	S_w	$S_{ heta}$	Ku	K_v	K_w	$K_{ heta}$
137	58.0	72.4	34.5	0.249	-0.096	-0.371	0.418	0.262	2.75	3.17	3.66	2.74
138	52.7	55.1	33.4	0.216	0.598	0.274	0.319	-0.027	3.06	3.18	3.73	3.20
139	58.2	59.5	32.1	0.210	0.112	0.152	0.124	0.299	2.85	2.44	3.76	2.88
140	168.1	153.9	69.7	0.291	0.279	-0.214	0.265	-0.000	2.65	2.85	3.93	2.91

Table 3 (Continued)

(3) 風速と気温のパワースペクトルの実験式は (10), (11), (12) と (13) で与えられる. 気温のパワースペクトルは慣性小領域において,周波数の -7/3 のべキで減衰する.

(4) 運動量と顕熱のコスペクトルは慣性小領域で、それぞれ周波数の -7/3, -2.8 のベ キで減衰する. 運動量のコスペクトルの形は (14) で示される.

(5) 粘性逸散率を用いて運動量を求める方法は直接測定した値よりも小さな値をとる.

6. 謝辞

観測データを電子計算機を用いて採集し,統計処理をするにあたって平塚支所渡部勲氏に 多大な援助をしていただきました. 観測塔における測器の取付け等は東海大学金子保氏,村 上博臣氏の協力を得ておけないました. ここに合せて感謝いたします.

References

- Businger, J. A., J. C. Wyngaard, Y. Izumi and E. F. Bradley (1971): Flux-profile relationship in the atmospheric surface layer. J. Atmos. Sci., 28, 181-189.
- Deacon, E. L. and E. K. Webb (1962): Interchange of properties of between sea and air: Small scale interactions. *The sea*, Interscience Publishers, Yew York, 43-87.
- Dunckel, M., L. Hasse. L. Krüngermey, D. Schriever and J. Wunknitz (1974): Turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer at the sea during ATEX. *Boundary Layer Meteorol.*, 81-106.
- 4) Hasse, L. (1970): On the determination of the vertical transports of momentum and heat in the atomospheric boundary layer at sea. Tech. Rep., No. 188, Dep. Oceanography, Oregon State Univ. 55pp.
- Inoue, E. (1974): Turbulent fluctuations in temperature humidity and refractive index of radio wave propagation. J. Meteorol. Soc. Jap., 52, 79-81.
- Kaimal, J. C., J. C. Wyngaard, Y. Izumi and O. R. Coté (1972): Spectral characteristics of surface layer turbulence. *Quart. J. Roy. Meteorol. Soc.*, 98, 563-589.
- Kondo, J., Y. Fujinawa and G. Naito (1972): Wave-induced wind fluctuation over the sea. J. Fluid Mech., 51, 751-771.
- Kondo, J. (1975): Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorol., 9, 91-112.
- McBean, G. A. (1970): The turbulent transfer mechanisms in the atmospheric surface layer. Ph. D. Thesis, Univ. British Columbia, Canada.
- 10) Mitsuta, Y., M. Miyake and Y. Kobori (1967): The dimensional sonic anemometer-thermometer for atmospheric turbulence measurement. Kyoto Univ. Internal Rep. 10pp.
- Miyake, M., M. Donelan, G. McBean, C. Paulson, F. Badgley and E. Leavitt (1970): Comparison of turbulent fluxes over water determined by profile and eddy correlation techniques. Quart. J. Roy. Meteorol. Soc., 96, 132-137.

- 12) Paquin, J. E. and S. Pond (1971): The determination of the Kolmogoroff constants for velocity, temperature and humidity fluctuations from second- and third-order structure functions. J. Fluid Mech., 50, 257-269.
- 13) Pond, S., G.T. Phelps, J.E. Paquin, G.A. McBean and R.W. Stewart (1971): Measurements of turbulent fluxes of momentum, moisture and sensible heat heat over the ocean. J. Atmos. Soc., 28, 901-917.
- Shiotani, M. (1975): Turbulence measurements at the sea coast during high winds. J. Meteorol. Soc. Jap., 53, 340-353.
- Wu, J. (1969): A criterion for determining air-flow separation from wind waves. *Tellus*, 21, 707-714.

(1976年11月11日 原稿受理)