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Abstract

The rocking motion and overturning of rectangular columns have been studied
in order to estimate carthquake intensity in the former investigations, The over-
turning condition of a column was considered by some ways of thinking in the past.
One is the so-called static overturning condition, and this gives only a necessary
condition as well known. The others are based on dynamical point of view and
consider the overturning of a column caused by sinusoidal excitation by the method
based on energy or the use of periodic solution, where a quarter wave of excitation
is used in the former method and infinite excitation is used in the latter.

But, in practice, the transient rocking motion of a column caused by several
waves excitation is important for the discussion of overturning. This report describes
the similarity laws on overturning and some features of transient rocking motion
of a column caused by infinite or finite sinusoidal excitation, and, as an example, the

overturning diagram for 3-wave excitation is considered.

1. Introduction

Rocking and overturning of rigid bodies are the typical phenomena to be observed
during earthquake and have been studied in connection with the estimation of
maximum ground acceleration by observing the overturning of grave-stones. There
are many factors which have effects on the overturning phenomena and some of them
have been made clear in the former investigations. Many problems, however, are
remained, and the estimation of dynamic effects is one of them.

In this report the author studied on this problem using a simple rocking model.
It is easy to obtain the numerical solution of a simple rocking motion for individual
columns, but, it is difficult to give the general discussion on overturning by reason
that the equation of motien is changed at collision of a column to the base. Hence,
some approximate or numerical methods are required, and then, at first the type of
excitation is to be assigned, and secondly the similarity laws must be established for
general application of the results obtained. In this report, the sinusoidal excitation
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with stationary amplitude is assumed, and similarity laws and some features of rocking
and overturning will be described.
2. Equation of motion and models for numerical simulation

The rocking motion of a rectangular column which is submitted to horizontal
ground motion 4 is given by

6 = n*ii cos (B=a) +n>g sin (O-a) =0 (1)
in which
My 3
- R il
PET M T # @

where g is gravity, I; the moment of inertia at G, M
the mass of the column (Fig. 1), In most cases, « and
0 are relatively small values, then the simplified equa-
tion

6 = niii+ngl=xa) 60 (3)

is often used. In this report, Eq. (3) is mainly used,
but Eq. (1) is also used for numerical simulation. Eq.
(3) represents the forced vibration of the system which

has the discontinuity of the restoring force at 6=0.
Table 1 shows the models for numerical simula- Fig. 1 Rocking model o84
tion. The models A-1, B-1 and C-1 which have column

Table 1 The models for numerical simulation

Type A cm | H cm o deg. A sec? ‘ as gal
10 40 14 597 | 245
A 2 20 80 14 4,22 245
| 3 50 200 14 2,67 245
1 ‘ 10 30 18.4 6.82 | 327
B | 2 | 20 ‘ 60 | 18.4 4,82 327
| 3| 50 i 150 18.4 3.05 327
1| 10 20 26. 6 8,11 490
& 2 20 40 26. 6 5.73 490
3 50 100 26. 6 3.63 490

different values of angle « {or the ratio of width to height) are basic models, and the
others are similar models with two or five times large size as the basic models. The
value of a5 is the minimum static acceleration for overturning, and the scale factor 4 is

given by
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A=ng (4)
which appears in the solution of Eq. (3) and has the dimension of frequency. Tt can be
seen from Eq. (2) that the larger the column is, the smaller value takes 1. Three
wooden columns for basic models are used in the following section as practical models

for estimation of damping ratio,

3. Damped free rocking motion and its phase-plane trajectory

In this section, the overturning condition and the damping of free rocking motion
are described. For this purpose, the phase-plane trajectory of motion is useful. The
equation of free rocking motion is given by

§ =720+ 050 (5)
Eliminating the time ¢ of Eq. (5), the phase-plane trajectory is obtained as follows:
Pla—0))—6*=C (6)

where C is an arbitrary constant given by initial conditions. The trajectory (6) with
various values of C is represented by curves in 6-§ plane as Fig. 2, and its tangent
changes discontinuously at 6=0. ;
. . 0
The phase-plane is separated into )u(l
some stable (non-overturning) or

unstable (overturning) regions by R AN

the linear trajectory correspond- c> 0\. // o~ \ / c> 0

ing with C=0 (chain line in Fig. /a\

B // ' x // \
There is no damping factor Z C<0 i

in Eq. (5), but in practice we can

c<o

see the decrease of free rocking

motion, There is an old way of Fig. 2 Phase-planc trajectory of free rocking motion
thinking on such a decrease which is based on conservation of angular momentum at
changing the center of rotation, and recently a further consideration on collision has
been done (Mochizuki & Kobayashi, 1976). There are many practical factors of
energy loss of rocking motion, for example, the friction of rolling or slipping, the
energy dissipation by collision, etc., but these are troublesome to be estimated
quantitatively. Then, for simplicity, it is supposed in this report that the energy loss
is represented by only the decrease of angular velocity at collision, that is,

f— 0 at =0 0<6=1 (7)

in which ¢ is the damping ratio, and is supposed to have a constant value. Using
Eq. (7), the phase-plane trajectory of damped free rocking motion can be derived.
Let €y be the initial trajectory in stable region and C, that after ¢ times passing of
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0=0, the following relation is obtained:
C; = 0*C,+{1—0") A% (8)
A set of the curves C, €y, C,, etc. connected at f-axis gives the trajectory of damped
free rocking motion with given initial conditions.
The value of § may be estimated by measurement or calculation from conservation
ol angular momentum, and hitherto some comparisons of measured and caltulated
value have been done. The author also has compared two estimations using the
wooden models A-1, B-1 and C-1. For a simple estimation from experiment, the
trajectory in the stable region of the phase-plane is considered. Let 77 be the time of

i-th passing of 0=0, C; the trajectory from T; to T;,, thea the time required for the
pass of the trajectory C, is given by

T 2 i ;“,, RSN ET
i s e 3 ln{ -Ci(oc-l—«f:x Cil‘l)] (9)

Eliminating €, C; and « in Egs. (8) and (%), the damping ratio is given by

8= (%Tl i) / ( g i) where E; = exp (MTeo— Tl (10)
Then the value of 6 can be estimated by measurement of T; only. Table 2 shows the
comparison of the measured and the calculated value. It can be seen that the two
estimations almost agree in this case and the damping is considerably small. Like
this, the damping ratio generally depends on the shape or size of the column and
the property of its base, but in this report, for simplicity, it is supposed to be constant
independent on them.

Table 2 Damping ratio of three wooden models

Measurement
Model =aa Theoretical
i=1 | 2 B 4 5 6 |Average
A-1 0.86 | 0.99 0.8  0.98 | 0.90 | 0.99 | 0.94 0.91
B-1 0.89 | 0.89 | 0.89 ‘ 0.85 | 0.89 ‘ 0.84 | 0,88 0.85
¢=1

0.80 0.77 0.80

0.75 =

= 0.79 0.7

Considering the initial trajectory and its change at =0, the condition of stability
for damped free rocking motion is obtained as follows:

Co >0 and 16,]<

1\, (11)
or (14—62 )/. €, <0

where 0, 6, are the initial angle and angular velocity, respectively, and C, the initial
trajectory given by Eq. {(6). The condition of overturning is given by the reverse
of the above.
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4. Rocking and overturning by horizontal excitation

There are four parameters in forced rocking motion caused by sinusoidal excita-
tion, that is, the angle (or the ratio of width to height) and the size of a column, and
the acceleration amplitude and frequency of excitation, which are fundamental for
discussion of overturning. Then, it is the first problem to be considered whether the
overturning condition of columns can be expressed by a diagram with these parameters
combined,

(1) General considerations

Substituting the horizontal excitation éi=a sin(wi-}- #) beginning at t=— §/w into
Eq. (3) and supposing that the column will begin to rock at ¢=0, the general solution
is given by

0= zat+Ae’+Be*—C sin (wi+f) 0=0 (12)
in which
Ao
C= e )

where A and B are arbitrary constants to be determined from initial conditions, g
the phase difference resulting from the time difference between the beginnings of
excitation and rocking motion. From the condition of motion beginning, 4 is given by

sin = &% (14)

For the later discussion, % is defined as follows:

#= = smp) a9
The solution (12) contains the divergent term e, though the column can be stable
because of the switching of equation at 0=0. If a solution does not take zero, there
will be no collision between the column and the base (this collision also will be called
rocking in this report) and the solution will diverge to infinity with time, and this
will represent the overturning by forced rocking motion.
The solution after » times rocking is expressed by

0, = (—1)"x+ A"+ Bpe " —C sin (wt+ ) (16}
where
—it 1-46 —at
A?Z+l = AH+ (—1)1,,“8 Fm—- 72}776 ?“lgﬂ(tn+l)
(17)
At 1_6 At
Bn+1 = B,,+(—1)”ace Ayt 2}_8 m]Qn(f,Hl)
n=20,1,2 .-

coes Bl
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in which ¢ is the damping ratio described in t}e previous section and tna(>4,) the time
at which the solution 6, takes zero, When 6=1, the third term of Eq. (17) dissapears.
Eq. (16) expresses the solution in 670 for n=0,2,4, ... and that in 90 for n—1, 3,
If the column will repeat some times rocking, the overall solution, and consequently,
the coefficient serieg {4.}, {Bn}(n:O,l,?,---) can be obtained. Substituting the
initial conditions =0 and §==0 at =0 into Eq. (16) and changing, the expressions for
A, and B, are obtained as follows:

4 e% @, )
BD} B 2_(2"57-{:02)7(—1*- w (18)
where

w, = Acot 8 (19)

At first, the case of infinite excitation is to be considered, Generally we can say
that the condition of non-overturning is the presence of infinite series {4,}, {B,} and
i =018, ). In the case of d=1, this statement is converted into a more simple
expression as the following. Namely, from Eq. (17), the following characteristics
of the serieg {4}, {B,} are obtained:

A0<A2< <A2n< <A2n+1< <A3<
B§<BE<BD<BI<BE< (20)

If the overall solution is stable, it can be seen that Ay =0(n—00) from Eq.{(17). Then
the series {4,} of stable rocking motion satisfies

A0<A2< <A2n< <O< <A2n+1< <A3<A1 (21)

or

A,<0 when #» is even}

22
A, >0 when » is odd =2

On the contrary, if the coefficient A, satisfies the condition (22) successively beginning
from #=0, the rocking motion will be infinitely repeated and the overall solution is
stable. Thus the relation (22) gives the condition of stability of rocking motion in the
case of infinite excitation and non-damping. From this result, if the condition (22)
does not hold for a value of n, the column will overtyrn. At this time, {4} will be a
finite series as follows:

{An} = Au: Al; Az; Tty ‘4.’\0 ot A.’»{+m (23)

If all terms of the series (23) satisfy the condition {22), the term Ayimiq also must be
found, therefore a first term Ay which does not agree with the condition (22) must be
present.  When M is even, it can be seen from the relation (20) that all terms after Ay
are positive, then the column will overturn to the direction of its first motion. Similarly
it will overturn to the opposite direction of that when Jf is odd.

— B —
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When 621, the relation (22) is not necessarily a condition to be required for non-
overturning because of the presence of the third term in Eq. (17), but it gives a sufficient
condition for non-overturning.

Next, the case of finite excitation is considered. Let T be the time of end of
excitation and #y(=7) the time of rocking nearest to 7, the solution in the range of
i=t, is given by

0ult) = (—=1)¥a+ A e+ Bye " —C sin (0t +f8) (24)

In general we can say that the stability of the column can be determined by only
the state at /=7 Let N (positive and real) be the wave number of excitation, the
rocking angle 6, and the angular velocity 8, at {=1 are rewritten as follows:

0p(T) = (= 1) a+ Ay exp [%(ZNR — 6)] + B, exp [%(ZIVH —/3)] —Csin 2N=
) (25)
Ou(T) = A {AM exp [i(zi\r;: - ﬁ)] —B, exp L—’})(sz —G)J = ‘;c cos ZNJT}

From Eq. (11) and above, the stability condition of free rocking motion after ¢=7T is
given by

0(T) <o and {a— [04(T) [} —{8:( T)/A}*>>0

- B4(T)04(T)< 0 and (1ﬁ 517) < {8 TY P = {0u(TY AP0 2

If the above does not hold, the column will have overturned or be overturning at =17

From the considerations above described, the similarity laws on stability or
overturning of columns can be derived. As previously mentioned, the four parameters
have effects on stability of columns, but these effects can be reduced to a relation of
two variables only. Namely, from Eqs. (13), (18), 4,, B, and C are all expressed in
the following form:

axF(‘;, k) @27

where F is an arbitrary function of w/2 and & Write x=w#, then the #-th solution
8, is expressed by the following:

B.08) = (—1)"x+ A, exp L’:—)x] + B, exp [—éx] —Csin (x+8)
r2 2w ol
6,05 = A{A?, exp L(—UJLJ —B,exp [— me —VAVC cos (x+,6)}

I'rom these equations, it can be seen that every term of {4,} and {B,} is expressed by
the form (27) and that the presence of a zero point #(>>f,) of the n-th solution ,(?) is
determined only from the values of w/4 and £ Then the presence of infinite series
{4.}, {B,} and {4} for infinite excitation depends on w/A and % only. Therefore

S
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the stability condition of columns submitted to infinite excitation is represented by a
region in wfi-k plane, and this region depends on é.

In the case of finite excitation, the same result is derived from Eq. (26) if N and
4 are constant. At this time, M in Eq. (25) is also determined only from /4 and £.
It is to be noted that the result is not true if the exciting time is constant.

From the above conclusion, when the wave number of excitation N and the
damping ratio 4 are constant, the following similarity laws on overturning or stability
hold:

1)  Since k:if:#, S times the acceleration amplitude of excitation is
( ga ™ glA[H) B

equivalent to 1/S times the angle = (nearly equal to the ratio of width to height) of
a column.

(2) Since A=»/3g/4r, S times the frequency of excitation is equivalent to 52

times the size of a column.
These similarity laws have been pointed out from the consideration of periodic solution
or experimental results in the former investigations, but here, a transient rocking
motion of a column with damping ratio § by N-wave excitation has been considered.
These results are approximately true because they are based on Eq. (3).

Figs. 3 and 4 show the responses of the models A-1, 2 and B-1, 3 for the common
values of w/4 and % in the case of N=3. In these figures the angle « of each model
is shown in a same scale and the damping ratio 6 is taken as 1 or 0.9. The cases of
overturning are shown in Figs. 4-1, 2 and those of non-overturning in Figs. 3-1, 2,
The difference of the overturning direction in Fig. 4-1 and Fig. 4-2 shows an effect

Fig. 3.1 Similarity of responses
/ for four models in the
; / case of non-overturning

1 ec
2 (B=1.5, wji—2.9, §=1)

Similarity of responses
for four models in the
case of non-overturning
(f=1.5, w/l=2.9, &=
0.9)
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&
d -
B-1 A-1 L-A-2 B-3
| Fig. 4.1 Similarity of responses
for four models in the
e ; ; case of overturning (k=

1.5, w/i=3.1, 5=1)

—at

Fig. 4.2 Similarity of responses
for four models in the

sec : :
case of overturning (k=

1.5, w/A=3.1, §=0.9)

of damping. I'rom these figures it can be seen that the responses of these models agree
precisely exclusive of the difference of 6- and time scale.

It seems to be impossible to obtain the region of stability or overturning theo-
retically because the analytical sclution of transcendental equation is necessary for
that purpose. Hence, some particular cases based on approximation or numerical
calculation will be described in the later parts.

{(2) Quasi-static overturning of a column

The case that the stability condition (22) for infinite excitation does not hold for
the first term (7=0), that is, 4,=0 gives a special case of overturning. For this
case the column will overturn as previously described, but furthermore, it can be seen
that the column will overturn without rocking after its first motion. Namely, the part
a+Age**--Bye " in the first solution 6, is increasing with ¢ because that 4,=0>B,.
Since the remaining part —Csin{wt-g) in 8, is periodic, if 6,>0 for 0<t<(7/2— )/ o,
then 6, >0 for any value of £>0. Expanding 6, into a Taylor series and considering
6o=0,="0,=0 at {=0, the following equation is obtained:

0, = ?95(7?)153 0In<t (29)

Using Eq. (16)

Ouln) = B Ae7—22Be~+ &*C cos (wn+ ) (30)
From Egs. (29) and (30), it can be seen that 6,>>0 for 0<¢<(n/2—pB)/ws. Thus the
solution 6; will diverge without taking zero, namely, the column will overturn without

— 9 —
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rocking.
Now, the condition that 4,=0 is equivalent to the relation

W=, (31)
Solving the above for the acceleration amplitude a, the following relation is obtained:
a=gan/ 1+ (wfA)? (32)

When =0, this agrees with the so-called static condition of overturning based on
Eq. (3). TFig. 5 shows the relation (32) for the models A-1, B-1 and C-1. As is shown
in this figure, the required acceleration becomes very large for high frequency. Then,
this kind of overturning is possible to occur in the case of excitation with low frequency
and large amplitude. In that meaning it may be called a quasi-static overturning.
Since the value of right hand side of (32) becomes smaller with increasing of 1 and
decreasing of «, then such an overturning may be the more probable for slender and
small columns. In this case the damping ratio need not to be considered because of
no collision. Fig. 6 shows the response of the model A-1 for the excitation with
frequency of 2 Hz and gradually increased acceleration amplitude. In this computa-
tion the non-linerar equation (1) was used. It can be seen that the minimum accelera-
tion amplitude for non-rocking overturning almost agrees with the value of Fig. 5.

_.
wn
}

Acceleration(G)

o
3]

1 2 3 4 s
Frequency(Hz)

Fig. 5 The range of quasi-static over-

Fig. 6 Response of the model A-1
depending on input accelera-
tion amplitude (case of 2 Hz)

turning for three models

In the beginning, the excitation was supposed to be infinite, but clearly it is not
necessary. The wave number of excitation required for a quasi-static overturning
can be estimated by use of the first of the condition (11). Let 7 be the time of the
end of excitation and N+¢ (N is positive integer and 0=e<'1) be the wave number,
then the non-rocking overturning condition from the free rocking motion after f—T
is given by

22§ =
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Ay’ + BT >C sin 2en

33
or  {wC cos 2en+ AC sin 2ex — 244 ("} x {@C cos 2ex — AC sin 2er+ 248,677} >0 } &3

Since A,207>B,, the second of (33) holds regardless of N if

1 1@
Fid 2

1,1 -1 @
55 &g 2 + o tan (34)

i
Thus one half wave of excitation is sufficient for overturning, and in the case of large
size column and high frequency of excitation, about a quarter wave is sufficient.

(3) Quasi-stable rocking motion of a column

If w=uw,, one or several times rocking will occur. Here, an approximate estima-
tion on the safety of a column for the case of w=w, and 6=1 is considered. In this
case, from Eq. (17), the following is obtained:

w0 BBy Byl 0B By - (35)
Then the stability condition (22) is equivalent to the relation 4,5, >0. Hence, the
column will rock at least M times if
A,B,>0 #=012 - M-1 (36)
Using Eq. (16) and that 8,(¢,.,)=0(»=0,1,2,---), 4,8, is given by
A,B, = AUBD+aC:g':(—1)i sin (@l 14 B) (37)

Since a further estimation of the above is difficult because the value of , is not analy-
tically obtained, then a sufficient condition for the relation (36) is considered here.
Namely, supposing that (—1)*sin (wf;,,+f)=—1 and substituting Eq. {37) into (36},
the following relation is obtained:

ABy > (M —1)xC (38)
Substitution of Eq. (18) gives

B2 —1k— TR (M —1DE—12 4 4(M—1)
o, [FEO DL/ T =0k A =Tk @

This gives one of the sufficient conditions in order to rock more than M times for
infinite excitation. In that meaning it may be called quasi-stable rocking motion
with an index M representing the number of rocking.

The relation (89) for various values of M is almost liner in w/i-% plane except
for M=1 as is shown in Fig. 7. In the right side region of the curve for each M the
column will not overturn before M times rocking. This figure can be used for rough
estimation of the safety of colunns. For example, in the case of the same values of
w and %, the smaller 4 is, the larger becomes w/1; then the larger M can be taken.
Namely, when similar columns are submitted to the same excitation, the larger column
has the more stability. But this is not always an exact estimation as will be shown

later.

— 11 —
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. 0'“‘N 5 Non_
Overturning 3:‘_‘_:“ }% Overturning

1 2 3 4 5 8§

Fig. 7 A diagram for quasi-stable rocking motion, and numerical
simulations in the case of N-waves excitation

Now, in order to have an approximate estimation for the case of finite excitation,
let us assume that

(1) if the column has a rocking after {=7 for infinite excitation, it will not
overturn though the excitation ends at =7, and that

(2) the number of rocking is, in average, less than two per period of excitation.
These assumptions are considered to be nearly reasonable for a comparative long excita-
tion. From these assumpticns it is derived that the column submitted to N-wave
excitation (N: interger) will quasi-statically overturn in the area of M =1 in Fig. 7,
will not overturn in M >2N -1, and both cases are possible in 1< M=2N--1. As an
example, the results of simulations using the model A-1 for N=3, 10, 15 are plotted in
Fig. 7, in which the value of % is taken as 1, 1.5 and 1.8. Tt can be seen from this
figure that the above estimation roughly applies and that it is rather overestimation for
safety when IV is large. This figure also shows the well-known tendency that the
overturning acceleration is nearly equal to the static overturning acceleration in the
range of lower {requency, but it rapidly becomes larger as the frequency increases.
(4) The overturning diagram for three-wave excitation

Here the case of 3-wave excitation is considered as an example of dvnamic over-
turning diagram in w/A-% plane. In this case, the numerical method is used and the
value of ¢ is taken as 1.

Fig. 8 shows the result of computation in the range of 1.15=%=C1.9. Like this
figure, the overturning condition for N-wave excitation is generally given by an
intricate area with many branches. The overturning for smaller value of 2 and the

— 12 —
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non-overturning for its larger value corres-
ponding with the same values of @ and %
can be found in this figure. Namely, when
the similar columns are submitted to the
same excitation, it is possible that the larger
column overturns and the smaller does not.

In order to apply this diagram to
individual columns with various sizes, it is
convenient to change it into a diagram in
f-K plane, where fis the frequency of exci-
tation and K the usual scale of earthquake
intensity (a/g). Ior simplicity, the linear
approximation of the curve in Fig. 8 is
considered here. Namely, using the lines
of M=5 and M =11 in Fig, 7, the w/i—*%
plane is divided into three regions as shown
in Fig. 8. The first gives the almost over-

®

Overturn

Fig. 8 Overturning diagram for 3-wave
excitation

turning area. In the second, the column will overturn or not, but in practice, con-

sidering the real conditions as damping cffect, it will hardly overturn. The third

gives the non-overturning area.

Using the relations of K-%2 and o/-f, the above three regions can be translated

into those in /~-K plane. By such translations the overturning conditions of some

6_.

f
(Hz)

Fig. 9 Translation of the overturning diagram into /~K plane (case

of the model A-2 and B-1)

— 13 —
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columns can be compared. As an example, the case of the models A-2 and B-1 are
shown in Fig. 9. In the range of abed in Fig. 9, the column B-1 will overturn, while the
column A-2 will overturn or not, and especially it will not overturn in the shadowed
area. Fig. 10 shows the responses of both models in the shadowed area. Like this
the column, which has a smaller ratio of width to height and more possibility of over-
turning in appearance, does not always easily overturn comparing with the column
which has a larger ratio and less possibility of overturning in appearance, if the former

has a larger size than the latter.

]
d /\ '/\I f’\
! \ ! \ I
[ \ ,r 1 7
+ \ / \ !
! 3 / i {
j A/ \ !
¢ + f T t
/ Z sec
L I
/
A
d+ u’"'\lnput Accel,

Fig. 10 The responses of two models in the shadowed area in Fig. 9
(case of f=2.5 Hz and K=0.44)

On this phenomenon, some actual data and theoretical study from the point of
view of energy were given by Ikegami and Kishinoue (1947, 1950) in the first place.
In the present work it was found that the above phenomenon was generally able to
occur in the case of the overturning caused by several waves excitation.

5. Conclusion

A consideration and numerical simulations on overturning of a simple rocking
model have been done. The results obtained are as follows:

(1) The condition for overturning or stability of columns submitted to the
sinusoidal excitation is represented by a region in w/A-k plane, and this region depends
on the wave number of excitation and the damping ratio of angular velocity at collision.

(2) When the wave number of excitation and the damping ratio are constant,
two similarity laws are derived from the above result. Namely, S times the accelera-
tion amplitude of excitation is nearly equivalent to 1/S times the ratio of width to
height of a column, and S times the frequency of excitation is equivalent to 52 times
the size of a column.

(3) By translating an overturning diagram in w/i-k plane into /K plane, the
overturning of columns with various sizes can be compared. As an example, the case
of 3-wave excitation and non-damping was shown.

— 14 —



A Study on Rocking and Overturning of Rectangular Column—N. Ogawa

(4) When the relation (32) holds, the column will overturn without collision
after its first motion. A relatively low frequency and a large amplitude of excitation
are required for this kind of overturning.

(5) When the relation (39) holds, the column will rock more than M times.
This condition gives a rough estimation for the safety of a column.

The author thinks that an experimental study is remaining to be done in this
work and the effects of vertical excitation must be taken into account in future.

The author wishes to express thanks to Dr. Takeo Kinoshita, National Research
Center for Disaster Prevention, for his advices in the course of this work.
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