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Abstract

Solving the wave transfer function in the closed form, the poles are investigated
in a complex plane. The equal time layvered model is applicd for this purpose so that
the predominant frequencics and the equivalent damping factors are easily obtained
by making use of poles estimated. Futhermore, the statistical relations of input and
output waves is discussed with the transmittancy function.

Particularly, the equivalent damping factor is distinguished between the quantity
due to the diffusive damping effect and the one due to the internal damping effect. In
this report, the above-mentioned wave transfer function is derived theoretically and

the gquantitative comparisens by making use the observed data are performed.

1. Introduction

Generally, there are two ways to construct the wave transfer function of the
linear visco-elastic multi-layered half-space to vertical incident plane waves. One
is where the general solution of the wave equation is separated into the forward and
backward waves. The methods based on this way utilize the reflection coefficients
which are determined by the wave impedance ratios and are only applied to homog-
eneous media. The other is where the representation for the general solution of the
wave equation including the undecided constants is solved, directly, based on the
boundary conditions. The former is adopted in our method.

At the expense of an unlimited frequency range which useful matrix formulations
and others are able to deal with, we construct an approximate closed form of the wave
transfer function of band-limited frequency range. However, in this formulation,
the restriction of frequency range is insignificant in the field of earthquake engineering
and the significant informations on the vibrational characteristics of surface layers
on the half-space are easily extracted as compared with other methods.

To evaluate the validity of the theoretically estimated wave transfer function,
the data observed earthquake waves are used. The data observed at Iwatsuki Crustal

Activity observatory are applied as a test casc, because the under-ground structure
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at this site has been well investigated.

2. Wave transfer function

QOur approximation, namely, the construction of the band-limited wave transfer

function, consists of adopting the

so-called “equal time layered model” 1 Fo

as shown in Fig. 1, slicing the accurate e Vi D1 1 = l B1
layers into thinner layers if necessary

so as to make all traveltimes equal e V2 D2 T F2 l B2
and introducing zero reflection coeffi-

cients where required. We denote €3 V3 Ds l Bs
this common time by T/2. Because  =—=————————a- --
of the common time, the maximum

frequency provided for the wave 9P_1 Ve De-i 1 Fp-
transfer function is restricted by 1/2T P Vp 1 Fp & Be

and a complex variable z is defined by
2DN=T'VN, NPt

Fig. 1. Iqual time layered model

z=-exp ({4); A=, [ <=7,
(2.1)

where frequency parameter % is called normalized circular frequency.
Next, we confirm some notations frequently used. Representing the wave
impedance ratio between the n-th layer and the {#--1)-th layer as

L (Pn Cn/PnJrl Cn+1) Eh (2 2)
in which ¢, stands for either u, (S-wave) or 4,42y, (P-wave) and p,, is the density of the
#n-th layer, the reflection coefficient of the backward wave between the n-th layer
and the (n-}+1)-th layer is as follows:

Bair = (o4 — 1) [ (@nsr + 1) (2.3)

Parameters u, and 2, are Lame’s constants for the perfectly elastic medium. Taking
account of the above notations, we describe the outline for formulation, which consists
of four parts, of the wave transfer function in a simple closed form.

[1] The z-transformed forward and backward waves in the n-th layer arc desig-
nated by F,(4) and B,(4), respectively, as shown in Fig. 1. As easily shown, the
waves between the n-th layer and the (n+1)-th layer are related by the following
matrix relations

Un+1(2) = (l—lsl-n‘fl) —1'Qn+1(’2) * Un (‘2) ’ 7’1:0, 1! """ ] p_]-, (2- 4)
where
o _[& = nu1 _[F.(4)
Qua=[, 0] ad m =[P 2.5)

— 46 —
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Introducing the following matrices
n
A, (4) 2[“{:«(4)] i,j=1,2 = 1;[1@17;(‘2): (2.6)

we know that these matrices are Hermitian and the wave transfer function is able
to be represented by the elements of matrix A4, (%)

as follows:

CA=F(/F Q) =g i (7 (2.7)
where o,= 1:[1 (1—35,) {2.8)

2] The relations
ay () = 27%-aly (4), n=1, - » by (2.9)

are obtained by making usc of the so-called method of mathematical induction. At

the same time, we have the following recursive relations
an(A) =20, afy = 2" [di" (4) + B B -air (= 2) ], =2, -+, b, (2.10)

I'rom these lacts, the wave transfer function reduces to the following form

G () =_z—‘f££ﬁ(ﬂ’ (2.11)

Furthermore, introducing a transformation
o (’1) = z_lfz'a?l (Z) s (2' 12)
the wave transfer function (2.11) and the recursive relation (2.10) become

Gz P NA

0,4 b

G =
and
(751 (2):1:9’71(;‘) :gra—l(z) +ﬁiﬁ;z'z—w_”'gn—1(*’i)!72:2: """ El Ps (2-14)

respectively.
3] The denominator of the wave transler function is cstimated to have the

following polynomial expresion
B-1
gp(d)=1+3gh -2 (2.15)
n=1
The set of coefficients appeared in the relation (2.15) is calculated by the recursive
relations (2.14). Explicit expression of the recursive relation, then, becomes
O = B, 0 =TGR O =2 e Py F=15 00000 ,n—1. (2.16)
Namely, we can obtain the wave transfer function by making use of relations (2.8),

R |
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(2.13), (2.15) and (2.16).

(4] Until now, we considered the wave transfer function for perfectly elastic
media. To correspond to the actual situation, we must introduce the visco-clasticity
of the medium. In this report, we consider the case where the type of visco-elasticity
is common to all lavers and the half-space. As is well known, in this case, the charac-
teristics of visco-elasticity are introduced by performing a frequency transformation
to the results obtained for the perfectly elastic case (Kobori and Minai, 1969). Two
frequently used types, the constant Q type and the Voigt type, are easily applicable
to our method. In these cases, Lame’s constant ¢, for the perfectly elastic case 1s

transformed into ¢,-¢(i2) in which

. 14+i/Q, for the constant @ type (2.17)
a(ih) = 1+4+i2/Q,T for the Voigt type. (2.18)

Then, we can use
A/ q A (2.19)

for the visco-elastic case, instead of the frequency parameter A for the perfectly elastic

casc. I'urthermore, we impose the condition
Q.1 and @, 32T (2. 20)

Consequently, when the wave transfer function is cvaluated, the complex variable

z must be exp (s7T), where
A/2Q,+il for the constant @ type (2.21)
 2/2Q,T+ii for the Voigt type (2.22)

in relations (2.13) and (2.15), instead of exp (i7) for the perfectly elastic case.

3. Pole structure for the case where the diffusive damping effect only exists

In this section, we consider the case where the diffusive damping effect only
exists, The case including the internal damping is dealt with in the next section.
A resonance phenomenon of the surface layers on the half-space is ruled by a pair

of complex conjugate poles which are roots of the characteristic equation

g(z2)=g,(—i-1In(z))=0 (3.1)

in the complex z-plane. First, we consider a method for obtaining the predominant
frequency and the equivalent damping factor or the —3dB bandwidth. Describing
a pair of complex conjugate poles of characteristic equation (3.1) as

reexp (=if), (3.2)

the predominant frequency F and the —3dB bandwidth B arc casily estimated in
contrast to the representation of a pair of complex conjugate poles for the second order
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system, namely,

exp (—aBT)-exp(x=i2z FT). (3.3)
Consequently, we obtain

F=6/2zT, B=—1In(#)/=Tand h=B/2F=-1n(») /0, (3.4)

where parameter /i is the equivalent damping factor and |#|< L is the condition by
which the stability of the wave transfer function is granted. The reciprocal of =83
is the time constant of the
impulse response  envelope
due to the corresponding
complex conjugate poles.
According to the above-
mentioned results, we can

draw a general diagram,

which is provided by the ] 9\ 0=2TJFT I\-

parameter 7, as shown in L
I 0

Fig. 2 Diagram of pole structure

Fig. 2. In the half circle
with radius of one, we know
the predominant frequencies based on the first relation in (3.4). Also, we use the
spiral curves with parameter / in order to know the equivalent damping factors and
the concentric semicircles with parameter B in order to know the —3dB bandwidths

which are represented by
r=exp (— ho) (3.5)
r=exp(—aBT) (3.6)

and
respectively.

4. Pole structure including internal damping

As mentioned in section two, we restrict the consideration to the case where the
type of visco-clasticity is common to all the layers and the half-space. To obtain
the pole structure in this case, we use a well known fact that the singular points of the
wave transfer function for the perlectly elastic case treated in the previous section
are transformed into the corresponding ones for the visco-elastic case by making use

of an inverse transflormation of the relation
A=3y g7y (1)
which is approximated by the conditions (2.20) as follows:
A(14+i/2Q,) for the constant @ type 4.2)

A (1+iA/2Q,T) for the Voigt type (4.3)

d
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Consequently, a pole (3.2) for the perfectly elastic case is transformed into

R(®)-exp (i0), 6= A, (4. 4)

where
R(O) = r-exp (—6/20,) for the constant @ type (4.5)
y-exp (—60*/2Q,T) for the Voigt type {4.6)

In these cases, the predominant frequencies are invariant to the perfectly elastic
case. Namely, the phase of the pole is the same as the [requency parameter 7 and
A, Therefore, the diagram introduced in the previous scction is also used when
changing the radius r into R(0).

From these considerations, we conclude the important result that the equivalent
damping factor would be distinguished by the part due to the diffusive damping
cffect, namely,

hy=—1n (1) /0, (4.7)
and the one due to the internal damping cffect, namely,
1/2@, for the constant @ type (4. 8)
=
0/2Q,T for the Voigt type 4. 9)

The —3dB bandwidth would be also distinguished in a similar manner.

5. Wave transmittancy function
We consider the wave transmittancy function which is sometimes called the
system [unction, which is defined by
SW=I6W I, |2<x. 5.1)
From the definition of the wave transfer function, the reciprocal of transmittancy

function is expressed by a finite Fourier cosine expansion as follows:
-1
ST =a+ 23 a, cos (i), [i|<r, (5.2)
n=1
where the coefficients {a; )}z are obtained by
1 &=L 5
Ay=—F—7" SI §£:i 111’_11 Q’ﬂ—l: ls K= 0’ 1: """ s P* 1. (0'3)
20'11 n=k

Generally, in the case including the internal damping such as the constant  type
or the Voigt type, these coefficients are dependent on frequency and agree with the
corresponding ones in the case of the diffusive dampind eflect only at zero [requency.

Relation (5.2) is useful to estimate an autocorrclation function of input random
process, assuming that the wave transler function and an autocorrelation function

of output random process are known. Such an cstimation will be applied to know

— 50 —
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the statistical characteristics of basement motion. Now, we denote the input and
output spectral density function by f,(4) and f,(7), respectively. Then, an autocor-
relation function of input random process is estimated by using Wicner-Khintchine’s

relation and relations (5.2) as follows:

Ry (k) = Iﬁf[ (3) - cos (k2) di
= |f. (2) - S7(4) - cos (BA)d A

=a,- Ry (k) +§u,, [Py (k—n) + Ry (k+n)], £=0,1, - , p—1 (5.4
where
Re =] feld)-cos (BY) d2, k=0, 1, vy p—1, (5.5)

are an autocorrelation function of output random process. The power spectral
density function of input random process by making use of the above-obtained autocor-
relation function is easily estimated. For example, the method of autoregressive
model fitting is effective.

Next, we consider the mean-squared value of output process in the case of white
noise input whose spectral density is 1/2z. Then, the mean-squared response ¢? is

calculated by

gf = 21” " Swdi=o- a3 (5.6)

where o2 is the integrated value of
lg@@) [ = lgp(—i-1n ()]

once around the unit circle, as follows:

a1 K 1 dz. (5.7)

g =

27 J g@)glz) 2

In order to evaluate ¢}, we use a simple method instead of using the exlpicit expressions

for the residues (Jury, 1964). Namely, defining a (p,p) matrix

F=[¢h;]i, 5000 oo b, .
where

dy=ghl, J=1, e . P,
and

Goy= 005 + g5y T=2,8, vee, p3i=1, 2, e, P,

a} is calculated by

= 51 —
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. _ det (¥))
%= det () (6.8

where ¥, is a (p,p) matrix formed from ¥ by replacing the first column by the (p,1)
matrix whose transpose is [1,0,0,....,0,0]. The wave transmittancy function pre-
scribes the fraction of energy to be transmitted through the surface layers on the
half-space at the various frequencies. Therefore, the parameter 6% shows the average

energy to be transmitted through the system in normalized circular frequency [i|<=.

6. Examples

Knowing the applicability of the results obtained in the previous sections, we
test the applicability to the acceleration data observed at Iwatsuki Crustal Activity
Observatory. Tig. 3 shows measurement system adopted at this site. For the
accelerations gauged at GL-1m and GL-108m, the measurement with the gain response
as shown in I'ig. 4 has been used. Also, Fig. 5 shown the gain response at the output
of .M. transmition used for obtaining the accelerations at the base of deep-hole with
the depth of 3.5km. Fig. 6 and Fig. 7 show the velocity structure proposed at the
site and used for examples [1] and [2], respectively. Tig. 7 was reported by Yamamizu
and Goto (1978).

(1] Asthe first step, we have done to compare the method of band-limited wave
transfer function with Haskell’s matrix method which is frequently used, for vertical
incident S-wave. Surface layers used as an example is the one between ground surface
and GL-108m. TIig. 8 shows a result, in which T=0.01, 0.02 and 0.03 sec are used
for the calculation of band-limited wave transfer functions. These common times
are corresponding to the upper limit frequencies 50, 25 and 16.7 hertz, respectively.
In the case of T=0.02 sec, the method of band-limited wave transfer function shows
good coincidence with the Haskell’s method in the frequency range from ( to 10
hertz. Therefore, we used the case of T=0.02 sec.

Estimating the wave transfer function using the data observed, we used the
acceleration data observed at Iwatsuki GL-1m and GL-108m for the Off Miyagi Pref.
earthquake (NS-component; June 12, 1978), which are shown in Fig. 9. TFor the
main part of this record, a running coherency was obtained as shown in Fig. 10. This
shows that the frequency which has meaning for estimating the wave transfer function
isat most 7 hertz. Fig. 11 shows the gain curves calculated with common time T=0.02
sec and the gain estimated from the above data. The estimation of gain based on the
observed data, is done by using the method of power spectrum, because this method
moderately smooths the gain function compared with the statistical method which
makes use of the spectral density matrix. Namely, except for the neighbourhoods
of predominant frequencies, the coherency spectrum is too small to estimate smoothly
the wave transfer function using the spectral density matrix. For the estimation

- T
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SEISMCHETER BA-355 mmx. scc. 100 gal
natural frequancy 5 B ™ m
dasplng factor >30 Ha— SARVO-AMPLIFIER SAG-12 DATA RECORDER R-250
lowar cut-off frequency 0.3 Hs
upper cut-off frequency 30 Hz
W2 asympototic responss —6 dB/oct.
SEISMOMETER BA-1355
™2 ™
"'t“::; :::‘g::"ggni B max. acc. 30 gal |r.c max. acc. 30 gal
™™g
SIGEAL DELAY $A03
delay time 10.61 sec
T.C. pass-band gain 1
BTARTER AR-502 TIKE CODE GENERATOR sampling frequency 289 Hx
8 bits, 3000 words
setting level 0.2 gal cut-oli frequancy 30 Ex
asympototic response =18 dB/oct.
w3
BEIBMOMETER SIGNAL TRANSMITION EQUIPMENT (F.M.) ™
natural frequency 100 Hz e pass-band gain 2
damping factor 0.6 -~ 0.7 signal-to-noise ratio >40 da
cut-off frequency 30 Hs
asympototic response -6 dB/oct.

.
™Ml o.eieee Gl =l m
™2 ..... G.L. =108 m
m) ... GL., =3,507Tm

Measurement system adopted at Iwatsuki Crustal Activity Observatory

FREQUENCY RESPONSE (GAIN)
SA-155—SAG-12

100
= RANGE 100gal
10 Lol ol Lol
01 1 10 100
FREQUENCY (Hz)
Fig. 4 Gain response adopted for shallow bore-hole
FREQUENCY RESPONSE (GAIN)
(vig) 85°C
100 =
B X
] ——=x
7 vz
10
SZJIIIIIJ _I_Illlllll 1 Lol 1 Ll
0.1 1 10 100
FREQUENCY (Hz)
Fig. 5 Gain response adopted for deep bore-hole
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5 and P wave Velocity Density 5 and P wave Velocity Density
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Fig. 6 Velocity structure (1 Fig. 7 Velocity structure (2
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(after Yamamizu and Goto (1978))
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Fig. 8 Comparison between the Haskell’s method and the band-Timited
wave transfer functions
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Fig. 9 Waveforms used for the example [1]

shown in Tig. 11, the frame time used is 10 seconds and the sampling time is 0.02
second. From this figure, we guess the value of Q, as about 30 in the frequency range
from 0 to 7 hertz.

Making use of relations (4.7), (4.8) and (4.9), we can apprchend the contents
of the cquivalent damping factors. Namely, we obtain Figs. 12, 13 and 14. In
Fig. 12, the cquivalent damping factors are expressed by the open circles, which
indicate the case considercd only the diffusive damping, and by the colsed circles,
which indicate the case including the internal damping cffect. Ifor above-mentioned
both cascs, a tendency that the equivalent damping factors become smaller increasing

o
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Fig. 10 Running coherency
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the orders of pole, is seen.

Also, Fig. 13 shows the ratios of the part occupied by the

diffusive damping effect to the equivalent damping factor including the internal damp-
ing effect. From this figure, we can see that the equivalent damping facter is mainly
due to the diffusive damping cffect in this frequency range treated, and the percentage
of the quantity due to the internal damping effect increases in proportion to frequency.

,/10,20,30,107/

T=0.02 sec

b --+ observed

FREQUENCY (Hz)

Fig. 12-1 Equivalent damping factors
estimated (constant Q type)

8 e e a L ;
“0.00 2.00 4.00 6.00 8.00
FREQUENCY (HZ)
Fig. 11-1 Gains estimated lor the wave
transfer function at Iwatsuki
GL-1m{GIL.-108 m for S-wave
(constant () type)
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Fig. 11-2  Gains estimatled for the wave
transfer function at Iwatsuki
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Similary, the reciprocal of the —3dB bandwidths are shown in IYig. 14, In the
case of 0,=350, the closed circles are almost flat, indicating, and therefore, the time
constants ol the impulse response envelope of the corresponding poles do not differ

remarkably. Finally, the diagram as shown in I'ig. 15 provides an overall representa-

tion of the pole structure.

1[— 0
Q 30

constant Q type

. ] | 1 ] |

0 5 10 15 20 25
A/2nT (Hz)

1
Voigt type
hd/h
BB Poie
: I | I | 1

0 5 10 15 20 25
A/2nT (Hz)

Fig. 13 Ratios of the part due to the diffusive damping effect to
the equivalent damping factors
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8¢/5,10,15,20,30/
T=0,02 sec

Fig. 15-1 Overall representation of pole structure (constant () type)

2000, 3000/
T=0.02 sec RN

i. i ) | \
s ddld &l d & 33

Fig. 15-2 Ovcrall represent ation of pole structure (Voigt type)

3

2] XNext, we consider the effect of the surface layers on the basement using
the velocity structure shown in Fig. 7. As done in the previous example, we estimate
the gain of the wave transfer function by making use of acceleration data (EW-com-
ponent; March 7, 1978) observed at Iwatsuki GL-1m and GL-3.5km as shown in
Fig. 16. The seismic center of this shock was Off Tokal having a depth of about
400 km and magunitude of 7.8 on the J.M.A. scale. We used the data after lowpass
filtering with a cutoff frequency of 1.12 hertz (—40dBjoct.) for the original shock
waves,

The frequency response function estimated is shown in Fig. 17. The frame time
used in the estimation is 30 seconds and the sampling time is 0.4 second. However,

it is difficult to discuss the damping cffect in detail based on these results estimated
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Fig. 16 Waveforms used for the example [2]

as was done in the previous example. Neverthless,
the velocity structure of the S-wave for the surface
layers and the basement at Iwatsuki which is reported,
supports the peaks of the gain estimated in the period
range from 2 to 10 second. In Fig. 16 as same as Fig.
9, the waves observed at GL-1m go ahead by 10.61
second compared with the othes waves and the time

code.

7. Conclusion

A band-limited one-dimensional wave transfer
function of the linear visco-elastic multi-layered half-
space to vertical incident body waves is considered
and applied to the acceleration data observed at
Iwatsuki Crustal Activity Obscrvatory. As the results,
the following five concluding remarks arc obtained.
‘1] For the perfectly elastic case, the wave
transfer function becomes a rational function of a
complex variable z=cxp (i 4}, |4| < z. The frequency
parameter i=wT is the normalized circular frequency
and a common time T is introduced by adopting the
equal time layered model. The predominant frequencics

and equivalent damping factors are easily estimated
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Fig. 17 Frequency response

function estimated
and wave transfer
[unction at Iwatsuki
GL-1m /GL-3.5 km

for S-wave

from the complex conjugate poles of the chracteristic eqation related to the wave

transfer function in the complex z-plane.

[2) In the case where the type of visco-elasticity is commom to all the layers

and the half-space, the poles obtained for the perfectly clastic case are transformed

into the correspending ones for the visco-elastic case by making use of a frequency

transformation.

Therefore, the quantity of pole’s movement owing to the frequency

transformation distinguishs the part due to the internal damping effect for the equiv-
alent damping factor from the part duc to the diffusive damping effect.
[3] The reciprocal of the transmittancy function is expresed by a finite Fourier

s B —
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cosine expansion, whose expansion coefficients are obtained [rom the sequence of the
wave impedances. Making use of these Fouricr coefficients, the statistical charac-
teristics of input random process, namely, baserock motion, is easily estimated, assum-
ing the input and output are second order stochastic processes.

4] A wavetransler function for S-wave at lwatsuki GL-1m/GL-108m is estimated
by making use of the acceleration data ol the Off Miyagi Pref. earthquake (Junc 12,
1978).  Estimated running coherency shows the effective upper frequency is about
7 Hz. For the constant ) model having (,=30, the ratio of the part due to the
diffusive damping effect to the equivalent damping factor shows a tendency of decreas-
ing with the orders of poles and becomes about 75%, for the fouth pole having the
predominant frequency of 5 Hz, Therefore, a tendency admitted generally that the
more the orders of poles increase, the more the equivalent damping factors decrease,
is mainly owing the diffusive damping effect in this frequency range.

[5] Making use of the acceleration data observed at Twatsuki GL-1m and GL-
3.5km, a wave transfer function for S-wave is estimated. The seismic center of the
record used (.\Iarch 7, 1978) is Off Tokai having a depth of about 400 km and a magni-
tude of 7.8 on the J.M.A. scale and Pre-Tertiary basement is assumed as the input
baserock for this estimation. In the period range from 2 to 10 seconds, the peaks
ol gain estimated coincide with the ones of the theoretical gain obtained by making

use of the velocity structure investigated by Yamamizu and Goto (1978).
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