556.1

日本の河川流域の月単位水収支と水文特性(第2報)

植原茂次*•佐藤照子**

国立防災科学技術センター

Monthly Water Balance and Hydrological Characteristics of River Basins in Japan (Second Report)

By

Shigetsugu Uehara and Teruko Sato

National Research Center for Disaster Prevention, Japan

Abstract

This report is the sequel of the first report entitled as Monthly Water Balance and Hydrological Characteristics of River Basins in Japan which was published in the Research Report of NRCDP No. 30 in 1983.

Based on the developed common method for the calculation of monthly water balance applicable to various river basins indicated in the first report, the authors analysed and examined following three subjects.

(1) Relationship between the type of monthly runoff model and its basin geology.

(2) Relationship between snow covered area and its water inventory (average water equivalent snow depth of the basin).

(3) Calculation of monthly water balance for 30 years from 1936 to 1965 to each of main river basins and evaluation of their hydrological characteristics such as the effects of snow pack and melt, rainfalls in bai-u and typhoon seasons on monthly runoffs as well as on the fluctuations of precipitation and runoff.

The following analytical methods were employed to these three subjects respectively.

(1) Basin geology is represented by the areal ratios of categolized 7 geological features such as Q_v : Quaternary volcanic rocks and deposits, Q: Quaternary rocks and deposits except Q_v , T_v : Tertiary volcanic rocks and deposits, T_s : Tertiary

^{*}第3研究部, **第3研究部降雨実験室

sedimentary rocks except T_v , G: Granite, R: Cretaceous rhyorite, andesite and dacite, PM: Paleozoic and Mesozoic sedimentary rocks.

The areal ratios of 7 geological features were measured to each of 83 river basins using Japan Geological Map with a scale of 1 to 1,000,000 published by Japan Geological Survey.

The type of runoff model is represented by an index ε which is a figure improportional to the degree of water holding capacity of runoff model and indicated in the first report.

Applying least square method, the relationship between estimated ε ($\overline{\varepsilon}$) and the areal ratios was analysed as a linear equation with seven parameters.

(2) Snow covered areas of 6 river basins, which include Aganogawa-Maoroshi, Uonogawa-Horinouchi, Tonegawa-Iwamoto, Tenryugawa-Miyagase, Kisogawa-Maruyama dam and Hidagawa-Shirakawaguchi, were measured for four years using available Landsat MSS Band 5 images. Meanwhile, water inventories corresponding to measured snow covered areas mentioned above were calculated based on each monthly water balance of the six river banins. Then, the relationships between snow covered areas and their water inventories to 6 river basins were analysed and examined.

(3) The monthly water balance and its fluctuation coefficient to each of 88 river basins of 62 river systems for 30 years from 1936 to 1965 were calculated based on established water balance model to each river basin and observational data on monthly precipitation and air temperature.

Using the calculated results mentioned above, various hydrological characteristics were examined and evaluated centering on 18 representative river basins in 9 districts.

As the results, following conclusions and considerations were obtained.

(1) The correlation coefficient between ε and $\overline{\varepsilon}$ is 0.690, which doesn't mean satisfactory result. However, the degree of water holding capacity to each geological feature is clarified in order as follows, Qv, Q, G, R, PM, T_s and T_v.

The result indicates the feasibility of estimating the type of monthly runoff model based on the basin geology.

(2) A close linear relationship is obtained between snow covered area in snow melt season and its water inventory (average water equivalent snow depth of the basin).

This result well corresponds with the one obtained through many studies conducted by researchers in the U. S. A., and indicates the usefulness of developed monthly snow pack and melt model as well as the feasibility of the application of satellite data in the practices of water management.

(3) The average monthly water balance for 30 year to each of 88 river basins indicates the regional hydrological characteristics as follows.

(i) The effects of snow pack and melt on runoff are excel in the river basins located in the central to northern districts of the Sea of Japan side. However, the effects appear more or less to all river basins in Japan. As the depth of snow pack and the rate of snowmelt to each month in winter depend upon the monthly air temperature of the basin, the effects appear stronger in the river basins located in high latitude or with high altitude. (ii) The peak precipitation and its effect on runoff in June and July brought mainly from frontal activites, so called bai-u, appear stronger in the river basins located in the central to southwestern districts of the Pacific Ocean side.

(iii) Meanwhile, the ones due to typhoons in September appear stronger in the basins located southern part of Kinki and Shikoku districts facing to the Pacific Ocean.

(4) The water balance between basins of trank river and its tributaries was calculated to each of two largest river systems, Tone and Shinano. The results indicate that the deficit monthly runoff at the gaging station of a trank river basin is well coinsident with the quantity of by-passed water taken at the intakes upstream of the station for water uses, at the same time, proposed monthly water balance model should be dealt with deliberately when the flow regime is strongly affected by water uses because of the inclusion of the effects into model structure.

(5) Average annual runoff to each of main river systems was estimated and the ranking for largest ones is as follows.

Tone, Kiso and Shinano river systems	$: 19.0 \times 10^{9} \text{m}^{3}$
Ishikari river system	: $15.4 \times 10^{9} \text{m}^{3}$
Agano river system	: $14.2 \times 10^9 m^3$

(6) It is found that the ratio of fluctuation coefficients of precipitation and runoff (C_p/C_q) in autumn can well represents the relative water holding capacity of river basin within the same climatic region.

(7) Judging from the calculated maximum reservoir capacity necessary for each averaged degree of runoff during 30 years, the fluctuation of flow regime is generally very large in the river basins located in the western part of the country reflecting much fluctuation in precipitation and less water holding capacity than those in the eastern part of the country.

1. まえがき

本報告は、国立防災科学技術センター研究報告第30号(1983)に、"日本の河川流域の月 単位水収支と水文特性(第1報)"として発表したものの続報である。

第1報では、流域の月単位水収支モデル作成の一般的手法を解説すると共に、全国の主要な 97 水系,187 流域に適用してその有効性を示し、更にモデル型の分類を行って各流域及び 地域の水文特性を明らかにした。

この月単位水収支モデルは、観測データから月単位の流域の降水量、積雪・融雪量、蒸発 散量及び流出量を算定する4つのサブモデルで構成されており、これらサブモデルの妥当性 あるいは実際的な意味については更に検討の必要性を示唆した。また確立された各流域の月 単位水収支モデルを使って、1936~1965年の30年間の水収支計算を行うと共にその変動性 を調べ、我国の主要河川流域の水文特性を明確にすることも課題として残されていた。

本報は上述の課題を踏え、(1)流域の地質条件と月流出モデル型との関係、(2)積雪・融雪モ デルと実際の積雪状況との関係、(3)月単位水収支計算結果による主要河川の水収支の特徴、

国立防災科学技術センター研究報告 第35号 1985年11月

水資源とその変動性の評価,について解析し検討を加えたものである.

(1)については、地質調査所発行の日本地質図(100万分の1)を用い、選定した83流域に ついて7つの地質大分類毎の面積占有率を求め、それをパラメータとして流出モデルの保水 性の指標を推定する式を最小二乗法により求めた。上記の7つの地質大分類は、①第四紀火 山性質(Qv)②第四紀の砂岩・泥岩及び砂礫等堆積層(Q)、③第三紀の火山性地質(Tv)④ 第三紀の砂岩・泥岩(T_s)、⑤花崗岩類(G)、⑥白亜紀の流紋岩、安山岩、デイサイト(R)、 ⑦中・古生代の砂岩・泥岩等(PM)である。

(2)については、入手できた4年余の間のLANDSAT・MSSのバンド5(0.6~0.7 µm)の 画像データを用い、阿賀野川・馬下、魚野川・堀之内、利根川・岩本、天竜川・宮ケ瀬、木 曽川・丸山ダム、飛驒川・白川口6流域について、融雪期の積雪面積を計測し、月単位水収 支モデルで別途計算した積雪水量と対比を行った。更に、雪線高度における気温を仮定し、 積雪・融雪のサブモデルから30年間平均の融雪期の各月における積雪面積を阿賀野川・馬下 流域等の3流域につき算出し、LANDSATデータを用いた上記結果と比較した。

(3)については、全国の主要 62 水系、88 河川流域について、既に第1報で確立した各流域の 月単位水収支モデルを使って、1936~1965 年の 30 年間の水収支を計算し、流出量、降水量、

(融雪水量+降雨量),積雪水量等の30年間の平均値並びに変動係数を求め,これに基づき, 地域毎に2流域づつ選定した全国18の代表流域について,水収支の特性を比較考察した.更 に,利根川水系及び信濃川水系については,流域内の水収支を検討し,水利用の流況に及ぼ す影響を考察した.水資源の賦存量については,平均流出高及び平均流量による比較の他, 年間の水系の総流出量を推算し,主要河川の水資源量の評価を行った.

一方,降水量の変動特性については,30年間平均の各月変動による地域的比較と流出特性 との関係を考察すると共に,流出の平均化率と必要貯水池容量との関係から,主要河川の変 動特性を明らかにした.

以上について得られた成果を示すと以下の通りとなる.

(1)について,

- (i) 7つの地質大分類の流域における面積占有率をパラメータとする流出モデルの保水性に 関する指標の推定結果は、相関係数で、0.690となり、十分な精度ではないが、流域の地質 条件から流出モデルの型を推定する一次近似の手法を示すことができた。
- (ii) 上記推定式の各パラメータの係数から、流域の保水性に関する各地質分類の順位は、①
 Qv, ②Q, ③G, ④R, ⑤PM, ⑥Ts, ⑦Tv となり、第四紀火山性地質が従来からの評価
 通り最大であるのに対して、第三紀の火山性地質は最小を示し、極端な対照となった。
- (iii) 上記の地質分類毎の保水性能を反映して、特定の地質が卓越する流域は、それと良く対応した流出モデル型となっており、地域的な特徴が明確に観察されるが、中・古生代砂岩・泥岩等 PM については、可成りのバラツキがみられる.これは、断層密度及び風化度といっ

日本の河川流域の月単位水収支と水文特性(第2報) ―― 植原・佐藤

た条件が大きく影響しているものと考えられる.

(2)について

- (i) LANDSAT 画像から計測した積雪面積と月単位水収支モデルから求めた積雪水量との 間には、可成り高い相関が得られ、一次関数として表現できることが明らかとなった。こ のことは、米国で得られた積雪面積と積雪水量が良い精度でリニアの関係にあるという多 くの報告と一致するものであり、この関係を使った融雪期以降の水資源管理及び融雪洪水 防御のためのダムの管理・操作に、衛星情報を効果的に利用できるという可能性を明確に し得たと考えられる。
- (ii)本報告が示した月単位水収支モデルの手法は、上記の結果からその有用性が逆に実証されたことになり、更に融雪期のみならず、積雪期についても一貫した流域の水収支を明確にすることができる。従って、米国のような半乾燥地帯の流域でなければ、容易に実証することができなかった(i)に示す結論についても、我国のような暖温湿潤な地域の河川でも、明確に示すことができたと考えられる。
- (iii) 雪線高度の気温を仮定することにより、積雪・融雪のサブモデルから、各月の積雪面積 を求め、(i)の関係から逆に雪線の気温を確定しようとする試みは、結論として雪線高度の 気温が大略5°Cであるということになった.この結論は非常に興味あるものであるが、検証 データが得られなかったので今後の課題である。因みに根雪最終日の気温は場所により異 なるが、最大は4°Cをこえており、上記結論は可成り信頼できるものと思われる。

(3)について

- (i) 30年間の月単位水収支計算の結果,各河川流域の水収支特性を定量的に明確に示すことができた。特に従来,各月の流出量は統計的に明確に示し得たとしても,流域の月毎の降水量,(融雪水量+降雨量)と言う完全な水収支で定量的に示されたことはなかったが,本報告で提示した手法で,これらが総べて明確に示され,しかも全国的な規模で統一的に評価できたことは大きな前進と考えられる。
- (ii) 水収支の特徴を全国的に眺めると、気候区に従って可成り明確なパターンが観察される. 日本海側河川は、北海道から中国地方まで、冬期の1月をピークとする降水が共通してみられ、東北・北陸地方が量的に多い。この影響は太平洋側河川にも北海道から東北にかけて可成り明瞭であり、利根川、淀川にもその傾向がみえる。積雪は流域の気温と冬期降水量によって支配されるので、寒冷地河川、東北・北陸等の冬期多降水河川及び中部山岳地の河川に多く、これら河川の春期の融雪出水は大きい。淀川、江の川のように流域標高が低い場合は積雪は少く、冬期の流出は豊富である。
- (iii) 梅雨による 6•7 月の降水からみると,北海道は少なく特にその日本海側は非常に少ない.
 しかし、東北地方は可成りあり、7 月の降水量が特に多い.この傾向は北陸及び関東までみられる.関東西部から近畿までは、6 月が多いか或は 6•7 月が同程度の降水量を示すが、

国立防災科学技術センター研究報告 第35号 1985年11月

中国以西になると再び7月が6月より多いというパターンとなる。九州は特に6•7月の降水量が卓越する。

- (iv) 台風期の降雨として9月の降水量をみると、北海道は梅雨より多い.東北・北陸・中国・ 九州では梅雨より可成り少なく、近畿北部までのその他の東日本は、梅雨よりやや少ない が、近畿南部から四国にかけては梅雨を上廻り、台風の影響が強いことを示している.8月 の降水量は関東西北部に多く雷雨によるものとみられるが、紀伊半島南部、四国南部、九 州南部に多いのは台風の影響と考えられる。
- (v) 利根川水系の本川・支川間の水収支を検討した結果,八斗島・栗橋において,利水等による流況の変動が算定された.栗橋の夏期水収支の不足分 61.4 m³/sec は,栗橋上流で取水され,中川流域に流出する見沼代及び葛西用水等の取水量と良い一致を示しており,水系内の水収支計算の結果は精度の良いものであることが検証された.しかし,このように利水による影響が水収支モデルに組み込まれることが明らかとなり,このような場合の水収支モデルは十分注意して扱う必要がある.信濃川水系の水収支も同様に行ったが,その精度は 5%以内と評価された.
- (vi) 主要水系の水資源賦存量として年総流出量を推算した結果,最大は利根川,木曽川,信
 濃川各水系の約 190 億 m³,第2 位は石狩川水系の 154 億 m³,第3 位は阿賀野川水系の 142
 億 m³等と評価された.
- (vii) 30年間の月降水量及び月流出量の変動係数 C_P, C_Qの比 C_P/C_Qを,秋期について地域毎 図示すると、流出モデルの保水性と良く対応した順位で並ぶことが明らかとなり、同一気 候区では秋期の降水・流出の変動係数比により流出モデルの型を相対的に推定できる手法 を示すことができた。
- (m) 流出量の平均化率と必要最大貯水池容量との関係を、30年間の水収支計算から得られた 月流出量の時系列データを用いて計算した結果、東日本と西日本の河川では、平均化の難 易に差があり、積雪地帯の河川は一般に容易であるが、夏期降水の多い河川は困難で、変 動性が大きいと評価された。流出モデルの保水性の大小は、同一気候区の場合は保水性の 大きいものが平均化は容易であるが、異なる気候区で平均化に及ぼす影響を評価すること は困難である。

2. 流域の地質条件と月流出モデル

2.1 地質条件の計測

(1) 方 法

流域の地質条件の計測は、地質調査所が1978年に発行した縮尺100万分の1の日本地質図 (第2版)に、選定した83流域の流域界を重ね、各流域内の地質区分毎の面積を計測し、こ 日本の河川流域の月単位水収支と水文特性(第2報) --- 植原・佐藤

れらを更に流域の地質特性として定めた7つの大分類に集計した.

この大分類は、地質の水文学的特性、形成時期及び分布状況等を念頭において、次の7分 類とした。

(i) 第四紀火山性地質:Qv

(ii) (i)を除く第四紀の砂岩, 泥岩等及び砂・泥・礫:Q

(iii) 第三紀の火山性地質:Tv

(iv) 第三紀の(iii)及び花崗岩類を除く砂岩・泥岩等:Ts

(v) 花崗岩類(はんれい岩, 閃緑岩を含む):G

(vi) 白亜紀の流紋岩,安山岩およびデイサイト:R

(vii) 中・古生代の(v)(vi)を除く砂岩,泥岩,礫岩,石灰岩,安山岩及び玄武岩:PM

以上の大分類と地質図地質区分との対比を表2.1に示す.

また,地質図に流域界を重合した図の例示として,東北,中部・北陸,九州の例をそれぞ れ図 2.1, (1), (2), (3)に示す.

(2) 計測結果

計測された各流域の大分類地質別面積は、それらの占有面積率として表 2.2 に示す.

表 2.3 は表 2.2 から,特定の大分類地質区分の流域における占有率が 40%以上と卓越した 流域を区分毎に一括して示したものである。

この表から、第四紀火山性地質(Qv)の卓越した流域は、東日本及び九州に多く、中・古 生代地質(PM)の卓越した流域は九州を除く中部以西に多いことが明らかである。

また,白亜紀の流紋岩等(R)の卓越する流域が中部及び中国地方に,花崗岩類(G)の卓 越する流域が中部・近畿・中国に多い.

一方東北地方は、特定の地質が卓越する流域が比較的少ないという特徴がみられる.

この様な地質の地域的特徴は、日本地質図を概観すれば容易に理解できることであるが、 流域の地質的特徴を定量的に比較するためには、この様なデータを作成することが不可欠で あり、各地質区分の占有率を念頭において、流域の水文特性を考察することにより、流出や 水収支に対する理解をより高めることができると思われる.

2.2 月流出モデルとの比較

(1) 地質条件をパラメータとした月流出モデルの推定

表2.3 に示したように、卓越した地質区分に対する月流出モデルの対比は、明らかに第四 紀火山性地質(Qv)に対して保水機能の大きい I・II 型が、また、中・古生代地質(PM)に 対しては保水機能の少ないIII~V型が対応しており、この結論は、第1報で述べたことと一 致している。

しかし,花崗岩類(G)の卓越した流域は,第1報で考えていたよりは保水機能が大きいこ

国立防災科学技術センター研究報告 第 35 号 1985 年 11 月

表 2.1 流域の地質特性としての大分類と日本地質図地質区分との関係

Table2.1 Relation between categorized 7 geological features and geological classifications adopted in Japan Geological Map.

代	紀	世	地質区分	地質図の記号	大分類
		完新世	砂・泥および礫	Н	Q
			デイサイトおよび流紋岩	rQ	Qv
		百年半後世	角閃石安山岩	ah	11
	第四紀	更新世後期~ 完新世	輝石安山岩	aP	11
		President (Aller (Aller (Aller)) (President)	アリカリ玄武岩	kQ	11
			ソレアイト質玄武岩および高アルミナ玄武岩	bQ	11
		更新世後期	礫岩・砂岩・泥岩および凝灰岩	Q ₂	Q
		更新世前期	砂岩・泥岩・礫岩および凝灰岩	Q1	Q
			粗面岩およびアルカリ流紋岩	t	Qv
		4¥ 105 111	アルカリ玄武岩	kN	11
		野新世~ 更新世前期	デイサイトおよび流紋岩	rN	11
			安 山 岩	aN	11
			ソレアイト質玄武岩および高アルミナ玄武岩	bN	11
新			砂岩・泥岩・礫岩および凝灰岩	N _a	Ts
生	新第三紀	鮮新世	石英閃緑岩一花崗岩	g,	G
-	61745-604		はんれい岩および閃緑岩	d ₉	n
代			花崗斑岩	gPN	11
		rf+ 效5-444-3% ##9	デイサイトおよび流紋岩	V ₅	Tv
		年新世後期~ 鮮新世前期	安山岩および玄武岩	as	-n
			泥岩・砂岩・礫岩および火砕岩	N_2	Ts
		2 X	デイサイトおよび流紋岩	V4	Tv
		中新世前期~中期	安山岩および玄武岩	a4	11
			砂岩・泥岩・礫岩および火砕岩	N ₁	Ts
			超苦鉄質岩類	SC	11
			花崗岩類・閃緑岩およびはんれい岩	g5	G
		Notation III	流紋岩およびデイサイト	r ₃	Tv
		漸新世	安山岩およびデイサイト	a3	11
	古第三紀		砂岩・泥岩および礫岩,一部炭層をともなう	PG ₃	Ts
		始新世~漸新世	砂岩・泥岩および礫岩,一部炭層をともなう	$PG_{\ 2-3}$	11
		始新世	砂岩・泥岩および礫岩	PG ₂	11
			安山岩および石灰岩	PG_2	11
		晩新世	砂岩・泥岩・礫岩および玄武岩	PG ₁	<i>n</i>
	白玉红 体一的	古弗二紀甲新世前期	砂岩・泥岩・玄武岩および礫岩,一部石灰岩	PG	11
	日田紀~弗二紀		化局岩類	g 7	G
			超苦鉄質岩類	SH	11
			はんれい岩および閃緑岩	d7	11
			化岡岩類	g6	11
φ			はんれい岩および閃緑岩	d ₆	11
生	白亜紀後期		化局岩類	g5	11
代			化岡斑石および乂家地岩	gP	11
			(加収石およびアイサイト)	r ₂	R
			女山石およいデイサイト	a2	11
			砂石・泥石・幺武石および礫岩	K_2N	PM
			197石・味石および泥石	K_2	11

代	紀	世	地質区分	地質図 の記号	大分類
	白西幻中。洛期		泥岩・砂岩および礫岩	K1-2	PM
	口里和中~1发粉		砂岩・礫岩および泥岩	K1, K2	11
			花崗岩類	g4	G
			はんれい岩および閃緑岩	d₄	11
			花 崗 岩 類	g3	1)
	白亜紀前期		はんれい岩および閃緑岩	d3	11
			井長岩および石英斑岩	f	G
			安山岩および玄武岩	a 1	PM
中			砂岩・泥岩・礫岩および安山岩	K1	11
生	白亜紀		砂岩・粘板岩・玄武岩・礫岩・チャート・石灰岩	K	"
代	白而紀前期		流紋岩デイサイトおよび安山岩	r ₁	R
			砂岩・粘板岩およびチャート	J-K1	PM
	中生代後期		花崗岩類	g ₂	G
	およびそれ以前		はんれい岩および閃緑岩	d2	11
	ジュラ紀~		玄武岩	bs	PM
	白亜紀前期		砂岩・粘板岩・チャートおよび石灰岩	J-K]]
	ジュラ紀		砂岩・礫岩・および泥岩	J	11
	三畳紀後期		砂岩・泥岩および礫岩,一部炭層をともなう	T_2	11
	三畳紀前~中期		砂岩・泥岩および礫岩	T_1	11
	古生代末~中生代前期		花崗岩類	g	G
			はんれい岩および閃緑岩	dı	П
			超苦鉄質岩類	S	11
	二畳紀~		玄 武 岩	bH	$\mathbf{P}\mathbf{M}$
	中生代中期		粘板岩・砂岩・チャートおよび石灰岩	P-Mz	11
	二畳紀~		砂岩・粘板岩・チャート・石灰岩および玄武岩類	P-Mz	11
	中生代前期	÷	石灰岩	P-Mz	Ŋ
			はんれい岩および玄武岩	dM	11
	二畳紀		砂岩・粘板岩・チャート・石灰岩・礫岩・玄武岩	Р	11
士			石灰岩	Р	11
	石炭紀後期~		砂岩・粘板岩・チャート・石灰岩・玄武岩	C-P	11
生		í.	石灰岩	C-P	11
代	石炭紀後期		砂岩・粘板岩・石灰岩・チャート・玄武岩	C2	11
	石炭紀前期		石灰岩	Cı	PM
			砂岩・粘板岩・石灰岩・玄武岩・安山岩	Cı	11
			花崗岩類	gH	11
	デボン紀		砂岩・粘板岩および流紋岩ー安山岩	D	11
	シルル紀		石灰岩・粘板岩および流紋岩一安山岩	S	11
	先シルル紀		三滝火成岩類	$\mathbf{P}\mathbf{x}$	11
	中生代以前		変成岩類	Px, m_1	PM
	先シルル紀まで			m ₂ ,m ₃ ,m ₄	n
				ms,ms,m7	Ħ
				ms	11

国立防災科学技術センター研究報告 第 35 号 1985 年 11 月

米代川 1. 鷹巣 2. 米内沢, 最上川 3. 中郷 4. 稲下 5. 高屋 北上川 6. 明治橋 7. 朝日橋 8. 田瀬 9. 登米

- 図2.1 流域の地質条件(例示) (1)東北地方
- Fig. 2.1 Geological features of river basin (example). (1) Tōhoku District

日本の河川流域の月単位水収支と水文特性(第2報) ― 植原・佐藤

信濃川 1. 立ケ花 2. 小千谷 3. 小市 4. 杭瀬下 5. 堀之内 利根川 7. 岩本 8. 村上 9. 岩鼻, 荒川 10. 寄居, 富士川 11. 清水端 12. 桃林橋 豊 川 15. 布里, 木曽川 16. 丸山ダム 17. 白川口 18. 鵜沼 19. 上田 20. 忠節

- 図 2.1 流域の地質条件(例示) (2)日本中部
- Fig. 2.1 Geological features of river basin (example). (2)Central port of Japan

遠賀川 1. 日の出橋, 筑後川 2. 瀬の下, 川内川 3. 吉松 4. 下殿 5. 斧渕 大淀川 6. 高岡 7. 柏田 8. 綾北ダム 9. 嵐田, 番匠川 10. 直見

- 図 2.1 流域の地質条件(例示) (3)九州地方
- Fig. 2.1 Geological features of river basin (example).(3) Kyūshū District

表 2.2 調査対象河川流域における地質区分別占有面積率測定結果

水系及び	2	目別でく	2	流域面積	ţ	也質	別 占	有面	積(%)		CRE	月流出		=
河川名		96097914	-	(km ²)	Qv	Q	Tv	Ts	G	R	PM	≥0.400	モデル	ε	e
石狩川															
石狩川	中	愛	別	1,082.5	45.5	2.6	9.9	3.4	5.2	0	33.4		107	2.85	3.37
美瑛川	西	神	楽	645.0	74.0	7.6	3.5	0.3	2.3	0	12.3	\bigtriangleup	103	2.42	
石狩川	伊		納	3,378.6	48.7	14.6	5.4	2.5	4.0	0	24.8		201	3.23	3.64
雨竜川	多	度	志	996.0	0.7	6.1	20.7	28.4	15.9	0	28.2	\bigtriangleup	502	6.08	
石狩川	橋	本	町	5,710.6	33.8	12.7	8.5	16.5	6.1	0	22.4		201	3.23	3.64
空知川	赤		平	2,531.1	34.9	5.8	0	11.5	6.1	0	41.7		201	3.23	3.73
石狩川	石	狩 大	橋	12,696.7	26.8	19.2	4.8	20.4	4.2	0	24.6		201	3.23	2.95
十勝川															
十勝川	帯		広	2,529.3	26.7	35.1	1.4	0	5.8	0	31.0		202	3.26	3.22
11	茂		岩	8,276.9	29.7	33.5	11.9	12.6	0	0	12.3		201	3.23	3.34
沙流川	平		取	1,253.0	0	0	0	22.7	20.0	0	57.3	\bigtriangleup	402	5.39	
釧路川	標		茶	894.0	78.1	7.1	10.7	4.1	0	0	0		106	2.68	2.37
湧 別 川	開		盛	1,402.5	32.2	1.6	0	21.8	0.7	0	43.7	Δ	306	4.60	
網走川	美		幌	824.4	47.5	5.6	0	37.3	0	0	9.6	Δ	502	6.08	
米代川															
米代川	鷹		巣	2,109.0	16.9	13.6	24.3	41.5	2.3	0	1.4		502	6.08	4.66
阿仁川	ж	内	沢	683.6	28.0	1.7	37.1	21.1	11.3	0	0.8	\triangle	202	3.26	
最上川	·														
最上川	中		郷	2,100.4	3.5	18.6	7.4	46.8	23.2	0	0.5		402	5.39	4.49
11	稲		下	3,769.5	7.1	20.7	9.3	44.7	17.9	0	0.3	Δ	304	4.14	
11	高		屋	6,270.9	7.4	18.6	15.9	44.8	13.1	0	0.2		501	6.05	4.62
北上川															n
北上川	明	治	橋	2,165.0	44.6	8.8	8.2	7.7	3.2	0	27.5	Δ	402	5.39	
11	朝	B	橋	4,228.3	24.0	13.4	7.2	7.0	19.5	0	28.9		305	435	3.54
猿ケ石川	田		瀬	740.0	0	11.4	0	0	63.3	0	25.3		106	2.68	3.54
北上川	登		*	7,869.4	18.7	15.3	8.8	17.1	15.6	0	24.5		305	4.35	3.96
阿武隈川															
阿武隈川	阿	久	津	1,865.2	28.7	13.9	1.2	13.1	34.4	0	8.7		305	4.35	3.12
n	岩		沼	5,256.0	19.8	13.9	6.8	21.6	34.2	0	3.7		305	4.35	3.57
信濃川	0														
信濃川	立	ケ	花	6,442.2	31.0	10.4	8.5	18.8	11.7	1.4	18.2		101	2.28	3.75
11	小	Ŧ	谷	9,843.0	24.0	20.5	10.8	15.8	13.4	0.9	14.6		105	2.59	3.69
犀川	小		市	2,773.0	4.6	16.2	5.3	21.0	19.0	3.3	30.6		201	3.23	4.37
千曲川	杭	瀬	下	2,595.9	46.0	8.7	11.2	13.2	7.0	0	13.9		102	2.42	3.25
魚野川	堀	Ż	内	1,419.0	6.3	22.0	11.3	10.1	31.5	0	18.8		106	2.68	3.91

Table2.1 Measured areal rations of 7 geological features to each of 88 river basins.

国立防災科学技術センター研究報告 第35号 1985年11月

水系及び	4	明知识	\$.	流域面積	t	也 質	別占	有面	積(%)		CRE	月流出		1
河川名		19L10(07714	<u>ц</u>	(km ²)	Qv	Q	Tv	Ts	G	R	RM	≥0.400	モデル	5	ε
九頭竜川			-												
九頭竜川	4		角	1,379.3	22.6	10.1	20.5	0	4.8	7.9	34.1		205	3.78	
"	布	施	H	2,934.0	10.6	16.0	30.5	1.5	5.0	6.0	30.4		306	4.60	4.53
日野川	深		谷	1,281.0	0.3	17.8	39.2	1.4	6.0	4.8	30.5	\triangle	405	5.65	
利根川															
利根川	岩		本	1,670.0	20.2	5.8	22.2	13.7	30.1	0.8	7.2		203	3.51	3.91
n –	栗		橋	8,588.0	23.7	27.3	8.0	7.9	7.7	1.4	24.0		202	3.26	3.58
吾妻川	村		上	1,245.0	66.5	3.7	22.4	4.6	0.5	2.3	0		101	2.28	2.76
鳥川	岩		鼻	1,188.0	24.3	20.4	0.3	28.0	3.4	0	23.6	\bigtriangleup	404	5.61	
渡良瀬川	早	Ш	田	1,046.0	8.0	17.1	2.7	0	7.3	4.8	60.1		301	4.06	4.29
荒 川	寄		居	927.0	0.3	2.8	0	14.8	3.1	0	79.0		302	4.09	5.10
富士川															
富士川	清	水	端	2,120.0	24.6	21.0	11.7	3.5	28.5	0	10.7		103	2.42	3.26
笛吹川	桃	林	橋	632.0	14.3	24.6	6.9	0	43.0	0	11.2		105	2.59	3.20
狩野川															1.000
狩野川	大		仁	322.0	76.9	0	19.7	3.5	0	0	0		106	2.68	2.45
1)	徳		倉	568.0	81.2	5.7	9.9	3.2	0	0	0		105	2.59	2.06
豊川	布		里	248.8	0	0	6.9	13.9	35.6	0	43.6	1	302	4.09	4.55
木曽川								-							
木曽川	丸	山ダ	4	2,409.0	9.7	1.3	0	3.4	32.7	24.1	28.8		201	3.23	3.94
11	鵜		沼	4,683.8	8.5	2.1	0	3.9	18.3	41.1	26.1		203	3.51	4.19
飛驒川	白	Ш		2.020.0	8.5	1.0	0	0	3.7	66.7	20.1		201	3 23	4 35
長良川	上		Ħ	713.0	35.2	0	0	0	0.5	19.7	44.6		304	4 14	3 69
11	忠		節	1,606.8	14.7	4.1	0.3	0.4	11	16.8	62 6		501	6.05	4 38
鈴鹿川	高		岡	268.6	0	22.4	0.0	34.9	32 1	0	10.6	~	404	5 61	4.00
宮川	Ŧ	ケ	瀬	267.0	0	0	0	0	02.1	0	100	^	502	6.08	
淀川	~		124	20110	v	v		U	U	v	100		502	0.00	
淀川	-	淀		4 354 0	()水面	30.7	0	37	13 3	1 0	34.0		102	9 49	2 50
<i>n</i>	枚	ve	方	7 281 0	(15.5)	25.6	24	5.4	18.3	1.5	38 1		202	2.44	2.05
桂川	~	杜	15	887.0	(0.0)	7 4	0	0.4	2.0	2.6	87.1	^	505	0.01	5.65
大津田	hΠ	11	故	1 456 0	0	5.9	11 5	14.5	46.0	2.0	07.1		204	4 14	4 99
加 士 [[]	±t:	D		1,400.0	0	16.0	11.0	14.0	2 1	14 5	21.5	^	504	4.14 0.00	4.22
市自田	加	 	ea di	1 244 2	0	2 1	0	11.0	2.1 C 0	44.5	29.0	Δ	505	0.30	4.04
大和川	T	λH	+	655.0	0	45 0	1.0	7.5	0.9	0	5.0		501	6.05	4.94
(11 / 11	-1		77	033.2	0	43.0	1.9	1.5	39.5	0	5.5		402	5.39	3.33
	Ŀ		÷	405.0	n	0	0		14.0	0	04.0		0.01	0.00	
#E0071	1	-	TT T	495.0	0	0	0	1.4	14.0	0	84.6	Δ	201	3.23	
* ++ 10	Thi		Ч	1,008.0	0	3.7	0	10.1	5.2	0.2	80.8	\triangle	305	4.35	
吉井川	-														
百开川	ス		不一	978.8	3.8	0.8	0	11.6	35.3	16.8	31.7		305	4.35	4.22
//	岩	11.64	FL FL	1,717.0	2.1	1.8	0	10.0	32.8	20.1	33.2		501	6.05	4.32
旭川	旭)	第1タ	14	1,140.0	5.2	3.1	0	2.2	29.3	17.0	43.2		201	3.23	4.17
太田川	坎		村	1,481.0	0	1.0	0	0	40.2	37.9	20.9		308	4.99	4.06
錦 川	向	道ダ	4	152.0	1.2	0	0	0	1.4	55.8	41.6		402	5.39	4.77

水系及び	組測正々	流域面積	3	也 質	別 占	有面	積(%)		CRE	日流出		
河川名	載7月1791-10	(km ²)	Qv	Q	Tv	Ts	G	R	PM	≥0.400	モデル	ε	Ē
厚東川	厚東ダム	324.0	0	0	0	2.1	6.5	7.8	83.6		402	5.39	4.97
阿武川	高 瀬	401.0	3.2	0	0	0	7.6	74.4	14.8		501	6.05	
千代川	行徳	1,053.7	10.7	4.2	11.4	8.9	25.1	7.7	32.0		305	4.35	4.23
吉野川	池田	1,979.5	0	0	0	0.3	0.9	0	98.8		405	5.65	5.12
那賀川													
那賀川	長安口ダム	494.3	0	0	0	0	2.8	0	97.2		302	4.09	5.07
11	占 庄	765.0	0	1.2	0	0	2.2	0	96.6	Δ	204	3.75	
仁淀川	伊 野	1,462.7	0	0	7.2	6.4	1.4	0	85.0	Δ	305	4.35	
渡 川	具 同	1,807.6	0	0	0	0	1.6	0	98.4		407	5.95	5.10
肱 川	大 洲	1,009.0	0	0	0.4	1.6	0	0	98.0	\triangle	402	5.39	
遠賀川	日の出橋	695.0	5.6	0.8	1.5	31.3	37.2	0	23.6	Δ	307	4.96	
筑後川	瀬の下	2,315.0	61.9	17.1	3.1	1.1	8.2	0	8.6		202	3.26	2.28
川内川													
川内川	吉 松	284.0	54.7	23.0	0	22.3	0	0	0		102	2.42	2.71
11	下 殿	705.0	76.3	14.3	0	9.4	0	0	0		103	2.42	2.00
11	斧 渕	1,348.0	73.0	9.2	0	5.0	1.0	0	11.8		202	3.26	2.19
大淀川													
大淀川	高 岡	1,563.5	47.4	9.6	0	36.8	0	0	6.2		102	2.42	3.39
大淀川	柏 田	2,126.0	34.9	10.0	0	50.6	0	0	4.5		102	2.42	3.95
本庄川	綾北ダム	148.3	0	0	0	100.0	0	0	0		501	6.05	4.94
11	嵐 田	381.0	2.4	5.4	0	92.2	0	0	0	Δ	303	4.10	
番匠川	直 見	278.0	2.3	0	0	0	0	0	97.7	Δ	406	5.71	

日本の河川流域の月単位水収支と水文特性(第2報) —— 植原・佐藤

表2.3 特定の地質区分の卓越する流域(占有率40%以上)

Table2.3River basins with excel areal ratio of specific geological feature (the areal ratio is more than 40%).

(1) Qv の卓越する流域

(1) Basins with excel Qv

(2)Qの卓越する流域(2) Basins with excel Q

河川名	流	域	名	Qv 占有率	流出モデル型	河川名	流域名	Q占有率	流出モデル型
石狩川(美瑛川)	西	神	楽	74.0%	103	大和川	王 寺	45.8%	402
11	伊		納	48.7	201				
釧路川	標		茶	78.1	106	(3) Ts の卓越	域する流域		
網走川	美		幌	47.5	502*	(3) Basins wi	th excel Ts		
北上川	明	治	橋	44.6	402	河川名	流域名	Ts占有率	流出モデル型
信濃川(千曲川)	枕	瀬	下	46.0	102	米代川	鷹 巣	41.5%	502
利根川(吾妻川)	村		F	66.5	101	最上川	中 郷	46.8	402
狩野川	大		仁	76.9	106	11	高 屋	44.8	501
11	徳		倉	81.2	105	大淀川	柏 田	50.6	102
筑後川	瀬	\mathcal{O}	下	61.9	202	〃 (本庄川)	綾北ダム	100.0	501
川内川	吉		松	54.7	102	11 (11)	嵐田	92.2	303
11	下		殿	76.3	103				N
11	斧		渕	73.0	202				
大淀川	高		圌	47.4	102				

*:CRE≥0.500 で適合率の悪いもの

(4)Gの卓越する流域 (4) Basins with excel G

(6) PM の卓越する流域 (6) Basins with excel PM

河川名	流域名	Gの占有率	流出モデル型	河川名	流域名	PM 占有率	流出モデル型
北上川(猿ヶ石川)	田瀬	63.3%	106	石狩川(空知川)	赤 平	41.7%	201
富士川(笛吹川)	桃林橋	43.0	105	沙流川	平 取	57.3	402*
淀川(木津川)	加 茂	46.9	304	湧別川	開 盛	43.7	306
太田川	玖 村	40.2	308	利根川(渡良瀬川)	早 川 田	60.1	301
				荒 川	寄 居	79.0	302
(5) R の卓越す・	る流域			豊川	布 里	43.6	302
(5) Basins with	excel R			長良川	上 田	44.6	304
河川名	流域名	Rの占有率	流出モデル型	11	忠 節	62.6	501
木曽川	鵜 沼	41.1%	203	宮 川	天ケ瀬	100.0	502*
ル (飛驒川)	白川 ロ	66.7	201	淀 川 (桂川)	桂	87.1	505*
加古川	井の口	44.5	505*	由良川	福知山	91.0	501
錦川	向道ダム	55.8	402	紀の川	上 市	84.6	201*
阿武川	高 瀬	74.4	501	11	船戸	80.8	305*
				旭川	旭川第1ダム	43.2	201
				錦川	向道ダム	41.6	402
				厚東川	厚東ダム	83.6	402
				吉野川	池 田	98.8	405
				那賀川	長安ロダム	97.2	302
				11	古 庄	96.6	204
				仁淀川	伊 野	85.0	305
				渡 川	具 同	98.4	407
				肱 川	大 洲	98.0	402*
				番匠川	直 見	97.7	406*

とがわかり,花崗岩地帯の風化の深度は,この保水機能を満す程度に大きいのではないかと 想像される.

このような各地質区分の保水機能に関する考察を念頭において,各流域の地質条件を地質 区分の占有率でみて,その月流出モデルの型を推定すると,可成りな程度で解析で得られた 結果と合うことがわかり,地質条件から月流出モデルを推定する式を作成することとした.

即ち,月流出モデルの保水機能を表す指標として,第1報で述べた ϵ^{**} をを用い,この推 定値 ϵ を各地質区分の占有率を変数とした一次結合式で表わす次式を求める.

$$\bar{\varepsilon} = c_0 + \sum_{i=1}^{7} c_i x_i \qquad (2.1)$$

ここに c₀:定数

^{**} ϵ は月流出モデルの保水性を示す指標で、一定の降雨パターンを各月流出モデルに入力したときの 出力としての流出量の最大値 Q_{max} と最小値 Q_{min} の比($\epsilon = Q_{max}/Q_{min}$)で与えられ、保水性の大き い程 ϵ は小となる.(第1報参照)

日本の河川流域の月単位水収支と水文特性(第2報) —— 植原・佐藤

ci:各地質区分 xi が ε に及ぼす効果を表わす係数

x_i:各地質区分の占有率

 $i = 1 : Q_v$ 2 : Q 3 : T_v 4 : T_s 5 : G 6 : R 7 : PM

表 2.2 に示す 83 流域の地質条件のデータを用いて,最小二乗法により c_0 及び c_i を求め, その検証として,得られた式を用いて推定した ϵ と,水収支モデル解析の結果得られた月流 出モデルの ϵ との相関係数を求めると 0.638 となった.

83 流域の月流出モデルの中には、水文データが人為的な水利用等のために精度が悪く、結果として適合度の評価が低いものも含まれている。そこで、CRE ≥ 0.400 の低い適合度の流域を除く 59 流域(表 2.2 参照)のデータを用いて解析を行った結果、前述の相関係数は 0.690 まで改善され、C₀及び C_i を次の様に決定した。

 $c_0 = 4.033$ $c_1 = -2.663$ $c_2 = -1.175$ $c_3 = 2.033$ $c_4 = 1.800$ $c_5 = -1.001$ $c_6 = 0.558$ $c_7 = 1.100$ 図 2.2,表 2.2 に決定した推定式で得られた ϵ と、月流出モデルの ϵ との相関を示す.

(2) 結果の考察

月流出モデルの型を決定する最大の要因として,流域の地質条件に着目し解析した結果は, 推定の精度として相関係数 0.690 を得た.解析結果について以下に若干の考察を記す.

- (i) 図 2.2 から、地質条件により推定した ϵ の値は、月流出モデルの ϵ の値に比して、 ϵ が小なる区間で $\epsilon > \epsilon$ 、 ϵ が大きい区間では $\epsilon < \epsilon$ となる傾向がみえる.
- (ii) 表 2.2 より解析から除外された CRE \geq 0.400 の観測所の ϵ は、一般に値が大きい。しか し全観測所データを用いた推定式の ϵ と ϵ との相関関係も(i)と同様であり、特に上記の除 外データの推定式への影響はみられない。

図2.2 月流出モデルの ε と地質条件から推定 した ε の相関

Fig. 2.2 Correlation between ε of monthly runoff model and estimated ε ($\overline{\varepsilon}$) from basin geology.

- (iii) 7つの大分類地質区分の良否については、類似の地質区分を統合して4内至6分類を試みたが、いずれも相関係数は7分類の場合に比して低く、地質区分を変える必要はなかった。
- (iv) 得られた c_iの値から,各地質区分の保水機能に関する評価を行うと,その大から小への 順位は次のとおりである.
 - ① 第四紀火山性地質:Qv(c1=-2.663)
 - ② Qv を除く第四紀の地質:Q(c₂=-1.175)
 - ③ 花崗岩類:G(c₅=-1.001)
 - ④ 白亜紀の流紋岩,安山岩,デイサイト:R(c₆=0.558)
 - ⑤ 中・古生代の砂岩, 泥岩等: PM (c₇=1.100)
 - ⑥ 第三紀の砂岩,泥岩等:Ts(c₄=1.800)
 - ⑦ 第三紀の火山性地質:Tv (c₃=2.033)
- (v) (iv)の結果を各地質区分の一般的特性から以下に考察を加える.

① Qvが最も保水性が大きいと言う結論は、従来から言われてきた第四紀火山地帯の 河川流出は極めて安定であるという事実及び流出解析の結果とも良く一致しており、地質 的にも火山体及び火山噴出物の堆積地帯は断裂や空隙が多く、粗放な地層を形成している ことから当然とみられる.

② QがQvに次ぐ保水性を示したが、第四紀の砂岩・泥岩は固結度が低いこと、洪積・ 沖積層の粘土の堆積層は不透水性であるがシルトや砂礫層は透水性が高く、地下水の帯水 層として保水性が良いこと、更に湖沼や水田等の自然及び人工の貯水機能も含むことなど から、保水性が大きいと言う結論は妥当と考えられる.

③ G が当初考えていたより、保水性の良い地質と解析されたことは、少し意外の感も あるが、花崗岩地帯の風化は可成り深いとみてよいかも知れない.花崗岩地帯の谷地田が、 特に用水源がなくても成立している例から見て、妥当な結論と考えられる.

④ Rの風化は花崗岩のそれと似ていると言われているが、風化層の厚さは余り深くないので、花崗岩よりも保水機能が小であると言う結論は首肯できよう。

(5) PM は一般的に固結した岩相を示し,不透水性でもあることから,保水性は当然低い 評価が出るとみられていた.しかし,解析結果は第三紀の地質よりは高い保水機能と評価 された.この点については,表2.3 で PM の卓越した流域の月流出モデルが,保水性の比 較的高い型も含んでいることから,その評価は当然の帰結と言える訳であるが,この原因 として,断層や破砕帯の発達している流域の PM は,風化も進み亀裂や空隙も多く,保水 性は必ずしも低くはないという場合も考えられる.流域の地質区分の占有面積率ばかりで なく,断層密度や風化度を加味すれば更に詳細な流域の保水機能評価が可能となると思わ れる. ⑥ Ts は一般に固結した岩相で不透水性であり、表 2.3 の Ts が卓越した流域のモデル は一様に保水性の低い型となっている。但し、大淀川柏田の場合は、Qv がTs に次いで大 きい占有率であり、この保水性が大きく影響している。

⑦ Tvは東日本に多く分布がみられるが、その占有率が卓越している流域がないため、その保水性評価は困難であったが解析の結果は最も保水性が低いということになった。第三紀の火山性地質はグリーンタフ地帯と呼ばれる海底火山の噴出物が堆積した地質であり、一般に緑色の重粘土化が進み、不透水層を形成している。また、溶岩も第四紀のそれに比して割目が少なく、キャップロックとして存在する場合もその下位は不透水性の砂岩・泥岩等であるなど、不透水性で保水性が低いとみなすことができよう。

虫明(1981)⁴⁾は、山地河川流域の流況に及ぼす地質の効果について検討するために、主に 太平洋側の山地河川流域を対象として、低水流出指標及び低水の流量逓減係数と流域の地質 条件とを比較した結果、保水機能の評価の順位は、①第四紀火山岩類、②花崗岩類、③第三 紀火山岩類、④中生層、⑤古生層の順となった。

本報告の結果は、第三紀火山性地質が上記報告と大きく違っているのを除けば同様の結論 となっている.この違いは、虫明らの場合、太平洋側の河川のみを対象としており、東北日 本の日本海側のグリーンタフ地帯の流域を含んでいないためと考えられる.

大分類地質区分の面積占有率から流域の保水機能,即ち月流出モデルの型を推定する試み は、前述したように、相関係数0.690程度の精度であり、必ずしも満足すべき結果とは言え ないが、推定式の解析結果から、大分類地質区分の水文学的特性に関する相対的な評価を行 うことができると共に、流域の地質条件から、その月流出モデル型を第1近似として推定す る手法を提示することができたと思われる.

3. 積雪面積と積雪水量

3.1 ランドサット MSS データを用いた積雪面積の計測

第1報¹⁰では、全国の主要河川の月単位水収支モデルの中で、月単位の融雪・積雪モデル は、流域の月平均気温(T_{BMij})の一次関数で表わされる各月融雪係数(μ_{ij})を使って各月の 融雪量、積雪量を精度良く計算できることを示した。

この月融雪モデル決定の過程では、融雪・積雪に関する観測データを用いてはおらず、総 べて月単位水収支の観点から試行的にモデルを構築し、その妥当性を検証している.

積雪・融雪の観測は,積雪深さ計等による積雪深,プレッシャーピロー等による積雪重量, 断面観測による積雪密度等の地点観測データが得られてきたが,観測地点の数は限られてい る.流域全体の積雪・融雪量を評価するために,一定の測線に沿ったスノーサーベイや,テ

国立防災科学技術センター研究報告 第35号 1985年11月

スト区域における多数の標尺を目標に積雪深を空中写真で調査しようとする試みも行われて きた.しかしこれらの調査手法は多くの労力と費用を要するため,調査地区も限られており, 最近ではあまり行なわれていない実情にある.最近では,積雪・融雪の機構を積雪表面付近 の熱収支から求める研究も行われているが,測定要素が多く一般的な手法としては利用が困 難である.

そこで融雪量の推定としては、これまで気温をパラメータに用いて実用的には十分な精度 で融雪量が計算できることが示されてきた。例えば菅原ら(1969)⁶は、日流出解析に日最高 及び日最低気温を使って良い成果を得ており、また、小島ら(1983)³は、観測値を用いて融 雪量と各種の気温(日平均、日最高、正の気温の時間積算、その他)との相関関係を調査し、 その結果これらの各種気温はパラメータとしてどれを採っても大差はなく、相関係数は 0.87~0.90の範囲であることを示した。

本報告でも以上の事情を背景として、流域の月平均気温というパラメータを用いて、月融 雪・積雪モデルを作成し良い結果を得た訳であるが、第1報で示したこれらのモデルと、実 際の積雪状況との関連を明確にしておくことは、融雪・積雪現象をマクロ的に理解し、モデ ルの意味を明確にする上で不可欠のことと思われる.

広域の積雪状況については、最近衛星データが利用されるようになり、米国では静止気象 衛星(GOES)、軌道気象衛星(TIROS-N, NOAA-N)及び地球観測衛星(LANDSAT-N) の映像データを利用し,積雪面積を地図化し測定する手法¹⁾が研究され,更に得られた融雪期 の積雪面積から、映像受信日以降の融雪流出量の予測を行う手法^{2),8)}が開発され発電や洪水 防止のための効果的な貯水池運用に利用されている.この予測手法は、衛星データから求め られた積雪面積と、それ以降の融雪による河川流出総量との関係を流量観測データから求め、 これに基づき以後は衛星データによる積雪面積の測定のみで流域の積雪水量としての水資源 量を評価するものであり、上記関係式は一次式として一般に十分精度良く表現できると報告 されている.

我国でもこの面の研究は着手されており、幾つかの研究成果が報告されている。例えば、 武田(1980)⁹⁾は、阿賀野川支川只見川流域を対象として融雪期の積雪状況を、LANDSAT・ MSS データを用いてディジタル的な画像処理により検出し、地上観測点で得た積算暖度と 融雪係数との関係を使って、雪線上の多数の点における最大積雪水量を計算し、流域の最大 積雪水量の分布を求める手法を提示し、これを数流域に適用して、河川の流量観測データ等 と比較してその水収支上からの確度の評価を行った。利用できる衛星データは、可視域或は 熱赤外域のパッシブセンサによるデータであり、分解能の問題よりも雪被覆により積雪観測 が妨げられることが大きな問題となっており、今後アクティブセンサとして合成開口レーダ (SAR)の利用に大きな期待がかけられている。特に SAR データは、積雪の含水状況を検知 できるとみられており、積雪面積ばかりでなく、積雪水量を直接計測する可能性が注目され

-174 -

ている.

ここでは,精度の良い積雪面積の計測が可能な,LANDSAT MSSデータの内,バンド 5(0.6~0.7μm)の画像を利用することとした.

(1) LANDSAT データと積雪面積の計測方法

入手可能な LANDSAT データは、資源調査所が保有する 1972 年秋から 1973 年春までの データ、及び宇宙開発事業団地球観測センターが受信局開設後に受信した 1979 年冬から 1982 年春までの通算 4 余年のデータである.

この期間における積雪・融雪期の雲被覆率 30%以下のデータを,全国の解析対象河川に対 して検索し,更に,実物の 70 mm ポジフィムについてその画質を確認し,また一連の解析が 可能な程度にデータの撮像時期と数(融雪期で5 データ以上)を検討した結果,表 3.1 に示 すものを対象として積雪面積の計測を試みることとした.

表 3.1 に示すデータのバンド 5 の 70 mm ポジフィルムを,240 mm のネガフィルムに反転 拡大し,それを使って更に 2 倍の拡大写真として印画紙に焼付け,50 万分の 1 の白黒写真画 像を作成した.

これに解析対象河川の流域界をオーバーレイし、判読により雪線を透明紙上に描き、デジ タイザーで積雪面積を計測した.

新潟シーンの積雪画像の例を図 3.1(1), (2), (3)に示す.

積雪域の抽出は、図3.1にみるように先ず雲の被覆により積雪域が不明瞭となることが一

シーン番号・ 名称	年	月.日	雲被覆率	衛星	解析対象河川流域
Path116	1979	3.20	30%	L-3	阿賀野川 (馬下)
Row34		3.29	30	L-2	信濃川・魚野川(堀之内)
新潟		5.04	0	11	利根川 (岩本)
		5.22	0	1)	
		11.09	20	L-3	
	1980	11.12	10	L-2	
	1981	3.18	20	11	
		4.23	0	n	
	1982	5.15		L-3	
Path117	1972	12.16	А	L-1	木曽川(丸山ダム)
Row35	1973	1.21	А	11	〃 ・飛驒川(白川口)
高山		2.08	В	n	天竜川(宮ヶ瀬)
	1979	3.03	30	L-3	
		5.23	0	L-2	
		11.01	10	n	
	1980	2.08	10	L - 3	
		12.01	30	L-2	
	1982	3.23		L-3	

表3.1 積雪面積の計測に用いた LANDSAT データ Tabel 3.1 Landsat data used to delineation of snow covered area.

国立防災科学技術センター研究報告 第35号 1985年11月

- **図 3.1** LANDSAT 積雪画像(MSS バンド 5) 新潟シーン(Path 116-Row 34) 流域 A:阿賀野川(馬下) B:信濃川水系魚野川(堀之内) C:利根川(岩本) (1) 1979 年 3 月 29 日 (2) 1981 年 4 月 23 日
- Fig. 3.1 LANDSAT MSS Band 5 image indicated snow covered area, Niigata Scene (Path 116—Row 34) in which Aganogawa-Maoroshi (A), Uonogawa-Horinouchi (B) and Tonegawa-Iwamoto (C) basins are included.
 (1) 29 Mar. 1979 (2) 23 Apr. 1981

- 図 3.1 LANDSAT 積雪画像(MSS バンド 5) 新潟シーン(Path 116-Row 34) 流域 A:阿賀野川(馬下) B:信濃川水系魚野川(堀之内) C:利根川(岩本) (3) 1979 年 5 月 4 日
- Fig. 3.1 LANDSAT MSS Band 5 image indicated snow covered area, Niigata Scene (Path116—Row34) in which Aganogawa-Maoroshi (A), Uonogawa-Horinouchi (B) and Tonegawa-Iwamoto (C) basins are included. (3) 4 May 1979

番大きな問題であるが、その他にも森林被覆や山岳地の日陰の部分が積雪の判別を困難にし ている.そのため、MSS の CCT データを用いたディジタル的な解析による積雪域の検出は 困難とみられており、米国でも一般的には写真判読の手法で積雪域を抽出している. LANDSAT データを用いる場合は、MSS バンド 5 の白黒画像を 25 万分の1 の縮尺に拡大 し、ズーム・トランスファ・スコープにより地図上にマッピングする方法が一般的に行われ ているようであるが、これによれば、100 km² 程度の小流域の積雪域も精度良く抽出できると されている.しかし、判読につきものの、個人的な判断力や誤差が問題となっており、出来 得る限り同一人による一貫した作業が要求されることとなる.

本報告の場合も、上述の米国の問題点は同様であり、積雪域の判読は対象とする全流域を 一貫した作業を3回程度繰返し、判読の斉合性を得るようにした.

積雪の判読は、透明のゼロックスフィルムに流域界を記入した 50 万分の1地方図(国土地

理院発行)を複写し,前述した 50 万分の1の LANDSAT 画像に重ねて行ったので,雪線と 標高の等高線との関係を見ながら積雪域の範囲を判定し記入することにより,上述の判読上 の問題を或る程度回避することができた.

(2) 積雪面積の判読及び計測結果

図 3.2 LANDSAT 画像から判読した積雪域(阿賀野川,馬下流域の例示) (1) 1979 年 3 月 29 日

Fig. 3.2 Snow covered area delineated by photo-interpretation of LANDSAT MSS Band 5 image (Aganogawa-Moroshi basin). (1) 29 Mar. 1979

図 3.2(1), (2), (3)に阿賀野川馬下流域の積雪判読図の例を,また図 3.3(1), (2), (3)に信濃 川水系魚野川堀之内流域及び利根川岩本流域の積雪判読図の例を示す.これらは図 3.1(1), (2), (3)の LANDSAT 画像に対応したものである.

積雪判読図から計測された積雪面積を表 3.2 に示す.

図 3.2 LANDSAT 画像から判読した積雪域(阿賀野川,馬下流域の例示) (2) 1981 年 4 月 23 日

Fig. 2.3 Snow covered area delineated by photo-interpretation of LANDSAT MSS Band 5 image (Aganogawa-Maoroshi basin). (2) 23 Apr. 1981

図 3.2 LANDSAT 画像から判読した積雪域(阿賀野川,馬下流域の例示) (3) 1979 年 5 月 4 日

Fig. 3.2 Snow covered area delineated by photo-interpretation of LANDSAT MSS Band 5 image (Aganogawa-Maoroshi basin). (3) 4 May 1979

図3.3 LANDSAT 画像から判読した積雪域(信濃川水系魚野川堀之内流域及び 利根川岩本流域の例示) (1) 1979 年 3 月 29 日

Fig. 3.3 Snow covered area delineated by photo-interpretation of LANDSAT MSS Band 5 image (Uonogawa-Horinouchi and Tonegawa-Iwamoto basins).
 (1) 29 Mar. 1979

図 3.3 LANDSAT 画像から判読した積雪域(信濃川水系魚野川堀之内流域及び 利根川岩本流域の例示) (2) 1981 年 4 月 23 日

 Fig. 3.3 Snow covered area delineated by photo-interpretation of LANDSAT MSS Band 5 image (Uonogawa-Horinouchi and Tonegawa-Iwamoto basins).
 (2) 23 Apr. 1981

図3.3 LANDSAT 画像から判読した積雪域(信濃川水系魚野川堀之内流域及び 利根川岩本流域の例示) (3) 1979 年 5 月 4 日

 Fig. 3.3 Snow covered area delineated by photo-interpretation of LANDSAT MSS Band 5 image (Uonogawa-Horinouchi and Tonegawa-Iwamoto basins).
 (3) 4 May 1979

流 域	阿賀野川・馬下	魚野川・堀之内	利根川・岩本	流 城	天竜川・宮ヶ瀬	木曽川・丸山ダム	飛驒川・白川口
同面積年月日	6,997km ²	1,419km ²	1,670km ²	同面積年月日	2,260km ²	2,409km ²	2,020km²
1979 3.20	4,831(km ²)	(km²)	(km²)	1972 12.16	391 (km²)	782 (km²)	945(km²)
" 3.29	3,075	956	771	1973 1.21	1,117	966	647
<i>"</i> 5.04	1,326	389	472	" 2.08	863	716	
" 5.22	613	171	208	1979 3.03	817	1,244	458
" 11.09	25	6	19	″ 5.23	52	73	24
1980 11.12	436	148	177	<i>"</i> 11.01		16	12
1981 3.18	·		1,450	1980 2.08		1,370	1,226
<i>"</i> 4.23	4,635		786	<i>"</i> 12.01	171	51	18
1982 5.15	727	270	234	1982 3.23	497	563	379

表3.2 LANDSAT・MSS バンド 5 画像からの積雪面積計測結果

Tabel 3.2 Determined snow covered areas from Landsat MSS Band 5 images.

注) —— 雲により計測不能

3.2 月単位水収支モデルによる積雪水量の計算

LANDSAT データから測定した積雪面積は,1972年以降1982年までの11年間にわたっているため、これと対比する積雪水量を求めるために、この期間における月単位水収支計算 を積雪面積の調査対象河川について行う必要がある。この月単位水収支計算は、第1報¹⁰⁾で 既に求めた各河川の水収支モデルを用い、降水量、流量、気温のデータも同一観測所のもの を用いた。

従って、計算結果の適合度を第1報で求めたそれと比較することにより、水収支モデルの 妥当性を検証できることにもなり、また、1965年以降の水資源開発等の流況に及ぼす影響を 概略評価できるものと期待した。

表 3.3 に対象河川流域の 1972~1982 年間の月単位水収支計算の諸条件及び結果を示す.

表 3.3 から 1965 年以前と 1972~1982 年計算結果を,月降水割増係数 CP 及び適合度判定 係数で比較してみると, CP は岩本で 10%増,宮ケ瀬で 12%減の他は 5%以内の増減に止まっ ており, CRE が増大して適合度が悪くなった流域は馬下,宮ケ瀬,白川口, CRE が減少して 適合度が良くなったものが堀之内,岩本,丸山ダムで相なかばしているが,極端な差はみら れない.

以上のことから,第1報で得られた各河川の月単位水収支モデルの妥当性は検証されたと 考えられる.人為の流況に及ぼす影響については,CREの15%程増大した阿賀野川馬下流域 が只見川の電源開発との関連で注目される. 日本の河川流域の月単位水収支と水文特性(第2報) ―― 植原・佐藤

- **表3.3** 積雪面積調査河川流域の1972~1982年の月単位水収支計算 条件及び結果と1965年までの結果との比較
- Table 3.3Conditions for calculation of monthly water balance of 6 river
basins for which snow covered areas were determined
using Landsat MSS images and comparison of the results of
calculations for the periods of 1972- 1982 and before 1965.

河川	流	流域面積	除水細測而久	蒸 発	気 温		降水	割増	流出	水収支計	適合度 判定係
域	名	(km²)	P44-314 B62043731713	パターン	観測所	'n	СМ	CP	番号	算期間	数 CRE
阿賀野	₽ JII	6 997	田島,猪苗代,一の木,	北陸	* *	1/9	1 20	1.32	20.4	1965年 以前	0.270
馬	٢	0,337	館岩,只見	В	40 1A	1/2	1.30	1.39	304	1972~ 1982	0.310
信濃川	水系	1 410	अस्त राग-अस्त	北陸	長野	1/2	1 20	1.43	100	1965年 以前	0.303
堀 之	内	1,419	(初 (八, 八)(八)()()	в	-3.0°C	1/3	1.30	1.50	100	1972~ 1982	0.285
利根	Л	1 070	1. L. H. G	関東	201 - 145	1/2	1 00	1.20	202	1965年 以前	0.398
岩	4	1,070	/K L, / dii	В	則循	1/3	1.80	1.32	203	1972~ 1982	0.359
天竜	Л	0.000	304 ∋+ /m 747 m	中部	A# +0	2.00	1.00	1.28	001	1965年 以前	0.346
宫々	瀬	2,200	axa, 17.779王	В	供 1 公	1/2	1.60	1.13	201	1972~ 1982	0.364
木曽	Щ	9 400	王滝,木曽福島,	中部		1 /0	1 50	1.17	201	1965年 以前	0.252
丸山さ	7 2	2,409	大桑, 岩村	В	叹 早	1/2	1.50	1.13	201	1972~ 1982	0.200
木曽川.	水系	000.6	11日 日日 日日	中部	ile e	1/0	1.00	1.05	201	1965年 以前	0.299
白川		2,020	向侬,广告,燕川	В	叹 早	1/2	1.80	1.08	201	1972~ 1982	0.320

*:流域面積高度分布係数

**:上段-1965年以前,下段-1972~1982

3.3 積雪面積と積雪水量との関係

3.2の月単位水収支計算には、各月の流域平均積雪水量 (S_{ii}) が求められているので、これと 3.1 で LANDSAT 画像から測定された積雪面積 (S_a) との関係を探ることとした.

 S_{ij} はi年j月の流域平均積雪水量であるが、これは各月の水収支の結果として、j月末に積 雪水量として残っている言わば月末時における残高である。一方、 S_a はLANDSATデータ が受信された時点の積雪面積であるから、 S_{ij} は S_a の時点に合わせる必要がある。 S_a の時点を j月d日とすれば、 S_a の時点の S_{ij} の修正値 S'_{ij} は S_{ij} と S_{ij-1} との間を直線で近似することと して次式で表わされる。

 $S'_{ij} = S_{ij-1} + (S_{ij} - S_{ij-1}) \cdot d/m$ (3.1)

ここに m は j 月の日数,

表 3.4 (1)~(6)に各河川流域の計算結果を示す. この表には積雪域の積雪水量 (S^{"_{ij}})及び j 月 d 日に合わせた流域平均気温 ($T_{BM'ij}$) も参考のために示した. 特にS^{"_{ij}}の値は,全体から みて大き過ぎる場合は,積雪面積の測定が過少であったと判断される.

表 3.4 の結果を図 3.4(1)~(6)に示す. この図では S'_{ij} は S_w と置き変え、*印のデータを除外して S_a と S_w との関係式及びその相関係数を求めている.

国立防災科学技術センター研究報告 第35号 1985年11月

表 3.4 LANDSAT 画像から測定した積雪面積と水収支モデルから計算した積雪水量との関係

 Table3.4
 Relation between determined snow covered area and its average water equivalent snow depth of the basin calculated by monthly water balance model.

(1)阿賀野川,馬下流域 (1) Aganogawa-Maoroshi

							$A_Q = 6$,	997 km²
LANDSA	T 画像から	月単位オ	k収支モデルカ	ら計算した液	流域平均積雪2	水量等		
測定し†	に積雪面積	A と同じ年月	A の前の月	Aと同]じ日に合せた	補正值	備	考
年月日(A)	積雪面積(B)(km))	S _{IJ} (mm)	S _{ij-1} (mm)	S'ıj(mm)	S″ _{ij} (mm)	Т _{вм} ′ _{іј} (°С)	-	
1979. 3.20	4,831*	238	307	261	378	-0.8	<u>s" _ S'u</u>	· Aq
3.29	3,075	238	307	240	546	0.9] 	3 12日 12日 12日 12日
5.04	1,326	11	120	105	554	7.2	積雪水量	3 - 24 0 2
5.22	613	11	120	32	365	10.9		
11.09	25*	64	6	23	6,437	5.0		
1980.11.12	436*	85	30	52	835	2.3	T _{AM} 'IJ:A	A と同じ 亚均毎週
1981. 4.23	4,635	265	676	361	545	4.9		
1982. 5.15	727	0	145	73	703	11.6		

(2)信濃川水系魚野川, 堀之内流域 (2) Uonogawa-Horinouchi

 $A_0 = 1.419 \text{ km}^2$

LANDSAT 画像から 測定した積雪面積		月単位2					
		A と同じ年月	Aの前の月	Aと同じ日に合せた補正値		備考	
年月日(A)	積雪面積(B)(km²)	S _{ij} (mm)	S _{ij-1} (mm)	S'u(mm)	S"u(mm)	$T_{BM'1J}(^{\circ}C)$	
1979. 3.29	956	748	873	752	1,116	-0.4	上表に同じ
5.04	389	63	370	329	1,200	5.7	
5.22	171	63	370	145	1,203	9.2	
11.09	6	135	36	66	15,609	3.5	
1980.11.12	148	205	70	124	1,189	0.7	
1982. 5.15	270	0	399	200	1,051	10.3	

(3)利根川, 岩本流域 (3) Tonegawa-Iwamoto

 $A_{Q}=1,670 \text{ km}^{2}$

LANDSAT 画像から 測定した積雪面積		月単位					
		A と同じ年月	Aの前の月	A と同じ日に合せた補正値			備考
年月日(A)	積雪面積(B)(km²)	Su(mm)	S _{ij-1} (mm)	S'ıj (mm)	S"ij(mm)	T _{BM} ' _{IJ} (°C)	-
1979. 3.29	771	179	216	181	392	1.3	$S'' = S' i \cdot A_Q$
5.04	472	13	98	87	308	7.3	┃ S [™] B S [™] I: 積雪域の
5.22	208	13	98	38	305	10.6	積雪水量
11.09	19	57	6	21	1,845	5.1	
1980.11.12	177	53	22	34	320	2.9]
1981. 3.18	1,450*	420	657	519	598	-0.5	T _{BM} ´ıj:Aと同じ 日の流域平均気温
4.23	786	160	420	221	470	5.6	
1982. 5.15	234	0	123	63	450	11.8	

(4)天竜川, 宮ケ瀬流域 (4) Tenryugawa-Miyagase

 $A_{Q}=2,260 \text{ km}^{2}$

LANDSAT 画像から 測定した積雪面積		月単位2					
		A と同じ年月	Aの前の月	A と同じ日に合せた補正値			備考
年月日(A)	積雪面積(B)(km²)	S _{ij} (mm)	S _{ij-1} (mm)	S' _{ij} (mm)	S"ij(mm)	$T_{BM'IJ}(^{\circ}C)$	
1972.12.16	391	63	26	45	260	1.5	上表に同じ
1973. 1.21	1,117*	149	63	121	245	0.1	1
2.08	863	136	149	145	380	0.2	
1979. 3.03	817	87	110	108	299	2.3	
5.23	52	0	44	11	478	12.7	_
1980.12.01	171	49	19	20	264	3.1	_
1982. 3.23	497	78	76	77	352	4.4	_

LANDSAT 画像から 測定した積雪面積		月単位2					
		A と同じ年月 A の前の月		Aと同じ日に合せた補正値			備考
年月日(A)	積雪面積(B)(km²)	(kun²) S _{ij} (mm)	S _{ij-1} (mm)	S'ij(mm)	S″u(mm)	T _{BM} ' _{IJ} (°C)	-02336 0000
1972.12.16	782*	155	96	126	388	-2.5	S″ ₁₁ = <u>S'₁₁·Aq</u> B S″ ₁₁ :積雪域の 積雪水量
1973. 1.21	966	307	155	258	643	-3.8	
2.08	716	314	307	309	1,040	-3.5	
1979. 3.03	1,244	242	256	255	493	-1.1	
5.23	73	13	161	51	1,689	10.7	
11.01	16	76	4	6	903	6.6	T Em'u:A と同じ 日の流域平均気温
1980. 2.08	1,370*	175	197	191	335	-5.5	
12.01	51	107	53	52	2,456	-0.4	4:
1982. 3.23	563	211	185	204	874	1.0	

(5)木曽川, 丸山ダム流域 (5) Kisogawa-Maruyama dam

 $A_0 = 2,409 \text{ km}^2$

(6)木曽川水系飛驒川, 白川口流域 (6) Hidagawa-Shirakawaguchi

 $A_{Q} = 2,020 \text{km}^{2}$

LANDSAT 画像から 測定した積雪面積		月単位2					
		A と同じ年月	A の前の月	A と同じ日に合せた補正値			備考
年月日(A)	積雪面積(B)(km²)	S _{ij} (mm)	S _{ij-1} (mm)	S'ij(mm)	S"ij(mm)	T _{BM} 'ıj(°C)	
1972.12.16	945*	186	100	144	308	-2.4	上表に同じ
1973. 1.21	647	350	186	297	927	-3.7	1
1979. 3.03	458	245	268	266	1,173	-1.0	
5.23	24	12	152	48	4,040	10.8	
11.01	12	71	3	5	842	6.7	1
1980. 2.08	1,226*	174	184	181	298	-5.4	1
12.01	18	171	47	51	5,723	-0.3	1
1982. 3.23	379	225	193	217	1,157	1.1	

Fig. 3.4 Relation between snow covered area and average water equivalent snow depth of basin.

(1) Aganogawa-Maoroshi (2) Uonogawa-Horinouchi (3) Tonegawa-Iwamoto

- 図 3.4 積雪水量と積雪面積との関係. (4)天竜川宮ヶ瀬流域 (5)木曽川丸山ダム流域 (6)木曽川水系飛驒川白川口流域
- Fig. 3.4 Relation between snow covered area and average water equivalent snow depth of basin.
 (4) Tenryugawa-Miyagase (5) Kisogawa-Maruyama dam (6) Hidagawa-

(4) Tenryugawa-Miyagase (5) Kisogawa-Maruyama dam (6) Hidagawa-Shirakawaguchi
図 3.4(1)~(6)にみるように、データの数は少ないが、年月を異にしても、積雪面積と積雪 水量との間には直線的な比例関係があり、その相関は可成り高いことが明らかとなった。特 に積雪の多い阿賀野川・馬下、魚野川・堀之内、利根川・岩本の各流域は、表日本の河川流 域である天竜川・宮ヶ瀬、木曽川・丸山ダム、飛驒川・白川口に比して良い相関を示してい ることが注目される。

3.4 月単位水収支モデルからみた積雪面積と積雪水量との関係

3.3 で得られた結果を月単位水収支モデルから検討する.

水収支モデルには積雪面積を直接算定するモデルはないが、雪線標高を決定する条件を明 らかにすれば、流域面積の高度分布モデルが第1報で既に与えてあるので、これを使って計 算することができる。即ち、基準観測点の気温及び標高をそれぞれ T_{ij} (°C), H_T (m),流量 観測点標高 H_Q (m),流域最高点標高 H_P (m),流域面積高度分布パターン係数 n (1, 1/2, 1/3) とし、雪線高度の気温 T_{SL}を一定と仮定してその流量観測点からの高さを H_{SLIJ} (m) と すれば次式が成立する (図 3.5).

$$H_{SLIJ} = H_{BM} + \frac{1}{0.007} (T_{BMIJ} - T_{SL}) \quad \dots \qquad (3.2)$$

ここに H_{BM} は流量観測点からの流域平均高度 (m), T_{BMIJ} は H_{BM} の気温 (°C) であり、そ れぞれ次式で表わされる.

 $H_{BM} = \frac{1}{n+2} (H_P - H_Q)$ (3.3)

 $T_{BMij} = T_{ij} - 0.007(H_Q - H_T) - 0.007H_{BM}$ (3.4)

流域面積の高度分布モデルは $A(z) = a(H_B - z)^n$ であるから、積雪面積率 RSA_B は流量観

図3.5 流域面積及び気温の高度分布モデル.

Fig. 3.5 Models for vertical distribution of area and air temperature in river basin.

測点からの高度をzとして次式で表される.

$$RSA_{ij} = \int_{H_{su}}^{H_{s}} A(z) dz / \int_{0}^{H_{s}} A(z) dz$$
$$= (1 - \frac{H_{sLij}}{H_{B}})^{n+1} \dots (3.5)$$

積雪水量 S_{ij} は月末の値であり、 T_{BMij} は月平均の値であるからこれを月末の流域平均気温 ($T_{BM'ij}$) に直す.

 $T_{BM'ij} = (T_{BMij} + T_{BMij+1})/2$ (3.6)

月末の雪線高度Hsl'u,積雪面積率RSA'uは以上から次式で求められる。

$$H_{sL'ij} = H_{BM} + \frac{1}{0.007} (T_{BM'ij} - T_{SL}) \quad \dots \qquad (3.7)$$

$$RSA'_{IJ} = (1 - \frac{H_{SL'IJ}}{H_B})^{n+1} \quad \dots$$
(3.8)

阿賀野川・馬下,魚野川・堀之内及び利根川・岩本の各流域について,T_{SL}を1°Cから0.5°C 刻みで6°Cまで変化させ,1935~1965年の30年間の各月末平均積雪面積率 RSA'₁₁(各月末平 均積雪面積 SA'₁₁)を求め,同じく30年間平均の各月雪水量 Š₁₁との関係を求めてみた.

表 3.5 には T_{SL} が 3°C, 4°C, 5°Cの場合が示してあり、上記の \overline{S}_{ij} は S_w, $\overline{RSA'_{ij}}$ はRS_a, $\overline{SA'_{ij}}$ は S_a として記されている.

また,1月から5月までのSwとSaの関係を図3.4(1),(2),(3)に示す. 以上から次のことが明らかとなった.

- (i) 積雪水量 Sw と積雪面積 Sa の関係は9月末から5月末までの積雪・融雪期を通じて、時計廻り(図3.4の Sw~Sa 関係で)のループ*を描き(表3.5,図3.4参照), Sw の最大は2月末である.
- (ii) このループは T_{SL} が増加するにつれて上方に移行するが、 $T_{SL} = 5^{\circ}C$ の付近で、融雪期 の 2 月~5 月にかけてはほぼ直線状となり、3.3 で求めた $S_w \sim S_a$ の関係の直線にほぼ一致 するが、その勾配は少し緩い.
- (iii) 以上のことから,雪線標高の平均気温はほぼ5°C程度とみられ,しかも積雪水量と積雪面 積との直線的関係が成立することが月単位水収支モデルからも明らかにされた.

^{*}図3.4では1月から5月までのT_{sL}=3C,4°C,5℃に対するS_a~S_w関係のみを示しているが、9 月~12月を表3.5から図3.4中に記入するとループを示すことがわかる。ここでは図が複雑とな るため9月~12月を省略している。

表3.5 仮定した雪線標高温度に対する積雪面積と積雪水量

Table 3.5 Snow covered area and average water equivalent snow depth of the basin corresponding to assumed air temperature on the altitude of snow line.

		月(末)	JAN.E	FEB.E	MAR.E	APR.E	MAY.E	JUN.E	SEP.E	OCT.E	NOV.E	DEC.E
	Sw(mm)	483	568	458	157	3	0	0	18	79	254
阿加	TsL	RSa	1.00	0.99	0.60	0.18	0.01		0.03	0.34	0.74	1.00
野	3°C	Sa	6,997	6,927	4,198	1,259	70	(210	2,379	5,178	6,997
川王	Tsl	RSa	1.00	1.00	0.67	0.24	0.03		0.06	0.41	0.83	1.00
下十	4°C	Sa	6,997	6,997	4,688	1,679	210		420	2,869	5,808	6,997
沉域	T _{SL}	RSa	1.00	1.00	0.76	0.30	0.06		0.10	0.48	0.91	1.00
	5°C	Sa	6,997	6,997	5,318	2,099	420		700	3,359	6,367	6,997
	Sw(mm)	1,213	1,547	1,258	503	46	0	0	42	189	607
魚	Tsi	RSa	1.00	1.00	0.76	0.26	0.02		0.05	0.42	0.92	1.00
町 川	3°C	Sa	1,419	1,419	1,078	368	28		71	596	1,305	1,419
掘	Tsl	RSa	1.00	1.00	0.84	0.33	0.06		0.08	0.49	0.99	1.00
内	4°C	Sa	1,419	1,419	1,192	468	85		114	695	1,405	1,419
筑	T_{SL}	RSa	1.00	1.00	0.92	0.40	0.10		0.13	0.58	1.00	1.00
263	5°C	Sa	1,419	1,419	1,305	568	142		184	823	1,419	1,419
	Sw(mm)	357	471	379	158	23	0	0	25	56	155
利	T_{SL}	RSa	1.00	0.99	0.62	0.27	0.05		0.06	0.36	0.73	1.00
根	3°C	Sa	1,670	1,653	1,035	451	84		100	601	1,219	1,670
岩	T_{SL}	RSa	1.00	1.00	0.70	0.33	0.10		0.10	0.43	0.84	1.00
本流	4°C	Sa	1,670	1,670	1,169	551	167		167	718	1,402	1,670
域	T_{SL}	RSa	1.00	1.00	0.79	0.40	0.14	0.01	0.15	0.50	0.95	1.00
	5°C	Sa	1,670	1,670	1,319	668	234	17	250	835	1,587	1,670

Sw: 1936~1965の30年間の各月末における平均積雪水量(月単位積雪・融雪モデルから計算)

TsL:仮定した雪線標高の気温

RSa: 仮定した TsL に対応した流域の積雪面積率

Sa:仮定した TsL に対応した積雪面積(km²)

3.5 結果の考察

以上3.1~3.4で得られた結果について若干の考察を行う.

(1) 最も重要な結論として、最大積雪以降の融雪期において、流域の積雪水量と積雪面積に 直線的な関係が存在する点であるが、これは米国の諸研究が得た結論と一致するものである。 即ち米国では、積雪面積に対応する積雪水量を、LANDSAT データ受信日以降、融雪流出が 完了するまでの期間の全流出量で表わしており、高い相関を得ている。

しかし、米国の場合は半乾燥地帯の河川であり、積雪・融雪は標高の高い山岳地で起り、 流出の殆んどは融雪水によりもたらされているという事情があり、融雪期に降雨があると、 この直線関係は乱されることになる.

一方,我国の場合は雪線以下での流域低地における融雪期の降雨は可成りあり,積雪水量 との割合が問題ではあるが,米国の様に流出量の累計から積雪水量を求めることは困難であ るとみられ,この関係を明確に把握するためには,水収支モデルにより積雪水量を求めると いう本報告で示したような方法が必要と考えられる.

国立防災科学センター研究報告 第35号 1985年11月

(2) 雪線標高の温度が5℃程度という結論は非常に興味があるが、これを検証する文献や データが見当らないので、各地における根雪最終日に対する気温を求め表3.6に示した。

この表から直ちに上記の結論の妥当性を示すことはできないが、雪線の位置と根雪の最終 日の時の位置との関係が与えられれば、説明も可能となろう.根雪の定義が "25 日以上雪が 消えずに連続して地上を覆っているとき"とあるが,日射面も含め,地表が全面露出しない 程度に積雪がある状態を言うのであれば,雪線と判別された日時は根雪最終日より遅れると みられるので気温は表 3.6 より高くなる可能性はあるとみられるが、今後更に検証しなけれ ばならない。

(3) 9月末から1月末までの積雪期の積雪面積については、気温の上からは表3.5にみるよ うに,9月末は5月末と10月末は4月中頃と,11月末は3月中頃に匹敵する積雪面積率と なっているが,この時期は降水量が少ないこと,新雪の融雪は量も少ないため早いことなど から衛星画像で判読することは困難であり、観測と降雪とのタイミングから変動は大きいも のと考えられる。米国の研究も積雪期は除外し、最大積雪以後の融雪期に限定して衛星デー タの利用を行っているのもその辺の事情によるものと思われる。

表3.7には、水収支モデルとTsL=5C°とした場合の積雪域の積雪水量を示しているが、9 月から11月末の積雪水量は上記の説明を裏付けている。

観測	場所	根雪の最	月平均	気温(C)	(B)に対す
6	A)	終日 (B)	(B)の前	(B)の後	る気温(D)
旭	Ш	4月4日	3月 	4 月 4.4°C	1.7°C
木L	幌	4月3日	3月 -1.9	4月 5.4	2.5
青	森	4月1日	3月 0.8	4月 7.0	· 4.1
盛	圌	3月12日	2月 -2.2	3月 1.3	1.0
秋	Ħ	3月11日	2月 -0.7	3月 2.3	1.9
Щ	形	3月13日	2月 -0.9	3月 2.3	2.1
新	潟	2月19日	2月 1.8	3月 4.7	2.2
金	沢	2 月26日	2月 2.5	3月 5.6	3.6
福	井	3月2日	2月	3月	4.3

表3.6 各地の根雪最終日頃の平均気温

(注)(B):気象学ハンドブック(1959)p.882,表15-12より根雪の定義は 25日以上雪が消えずに運続して地上をおおっているとき (C):1936~1965年30年間の各月平均値より。

(D): Bに合わせて(C)の前後データで補問した.

Table 3.6 Average air temperature corresponding to the end of continuous snow cover at various sites in northern Japan.

一方,表3.7の3流域では,魚野川堀之内流域の積雪水量が隣接の阿賀野川馬下及び利根 川岩本両流域に比して,極めて大きいことが明らかであり,積雪の比重を0.40とすれば魚野 川堀之内流域では2月末には平均3.85mに達する積雪に埋っていることになり,豪雪地帯 であることを物語っている。

表3.7 積雪域の積雪水量 (mm)

Table 3.7 Water equivalent snow depth corresponding to snow covered area.

 $T_{st} = 5.0^{\circ}C$

河川	流	域	JAN.E	FEB.E	MAR.E	APR.E	MAY.E	JUN.E	SEP.E	OCT.E	NOV.E	DEC.E
阿賀野川	馬	٢	483	568	603	523	50		0	37	87	254
魚野川	堀之	内	1,213	1,547	1,367	1,258	- 460		0	72	189	607
利根川	岩	木	357	471	480	395	164		0	50	59	155

(表3.5から算定,計算は1936~1965年の30年間の平均である)

4. 全国主要河川の月単位水収支とその変動

4.1 代表河川流域の月単位水収支計算結果

表4.1 に示す主要 62 水系の 88 河川流域について、既に第1報¹⁰⁾ で求められている各流域 の月単位水収支モデルを使って、1936 年から 1965 年にわたる 30 年間の水収支を計算した. その結果は 30 年間の平均値として各月毎の流出量,降水量,積雪水量,融雪水量及びそれら の変動係数(標準偏差/平均値)等を各流域毎の表として整理した.ここでは、地域毎の代表 的河川流域を2 流域づつ選び,表4.2(1)~(18)に示す.

代表的河川としては、第1報¹⁰表3(p.47)に示す流域を中心に選定したので、それらの水 収支モデルの詳細はこの表を参照されたい。但し、中部と近畿については、気候区及び流況 の違いを示すために、狩野川と新宮川を新たに選定したのでその水収支モデルを表4.3に示 す.

表 4.2 の (SM+R) は第1報の(2)式で表わされる SMij の 30 年間平均値である。特に R を 附したのは、融雪 SM と降雨 R の合計であることを誤解のないように示すためで、この値が 月流出モデル(蒸発を含む)により月流出量Qに変換される。また積雪水量S は月末の収支 結果であることを注意する必要がある。

表4.2に示した結果を図4.1(1)~(18)に図示し、各流域の水収支の特性を以下に考察する.

4.2 代表河川流域の水収支特性

(1) 北海道(石狩川・石狩大橋,十勝川・帯広)

降水特性は石狩川では秋期後半から冬期にかけての降雪・積雪が卓越し,梅雨の影響は殆んどみられないが,台風の影響は現われている。降水量の最高は1月,最低は5月であり,

-195 -

表4.1 月単位水収支計算流域

 Table 4.1
 River basins calculated monthly water balance.

番号	水系	河川		流 域		番号	水 系	河川		流域	t
1. 1	石 狩 川	空 知 川	赤		平	4.1	久 慈 川		神神		橋
1. 2	11		橋	本	町	4.2	那 珂 川		野		
1. 3	11		石	狩 大	橋	4.3	利根川		拉		本
1.4	Л	豊平川	雁		来	4.4	11	吾 妻 川	村		上
1. 5	十勝川		帯		広	4.5	п	鳥 川	凸		鼻
1. 6	天塩川		名	寄 大	橋	4.6	n		八	ᅶ	島
						4.7	n	渡良瀬川	早	Л	田
2.1	米代川		鷹		巣	4.8	11	思川	Z		女
2.2	雄 物 川		楴		Щ	4.9	11		栗		橋
2.3	最上川		稻		下	4.10	Л	鬼怒川	水	海	道
2. 4	Л		高		屋	4.11	11	小貝川	黒		子
2. 5	北上川		明	治	橋	4.12	荒 川		寄		居
2. 6]]		登		米	4.13	多摩川		石		原
2. 7	鳴 瀬 川		野	田	橋	4.14	相模川		相	模ダ	ム
2. 8	阿武隈川		阿	久	津	4.15	富士川		清	水	端
2. 9	11		岩		沼						
						5.1	狩野川		徳		倉
3. 1	阿賀野川		馬		\overline{r}	5.2	大井川		神		座
3. 2	信 濃 川	千曲川	杭	瀬	不	5.3	天竜川		鹿		島
3. 3	Л	犀 川	小		市	5.4	曹 川	寒狭川	布		里
3.4	Л		立	5	花	5.5	矢 作 川		岩		津
3. 5	11	魚野川	堀	之	内	5.6	木曽川		丸	山ダ	4
3.6	11		小	千	谷	5.7	11	飛驒川	白	Л	
3.7	神通川		神	通 大	橋	5.8	11		鵜		沼

日本の河川流域の月単位水収支と水文特性(第2報) ― 植原・佐藤

										1.000	
番号	水系	河川	流	[域		番号	水系	河川	-	流 域	
5.9	木曽川	長良川	忠	3	節	7.8	斐伊川		大		津
5.10	庄 内 川		枇	杷	島	7.9	江の川		都		賀
5.11	鈴 鹿 川		高		岡	7.10	阿武川		高		瀬
5.12	宮 川		天	ケー	瀬						
						8.1	吉 野 川		池		⊞
6.1	九頭竜川	日野川	深	ä	谷	8.2	那賀川		占		庄
6.2	11		布	施	Π	8.3	物部川		神	母	木
6.3	淀 川	宇 治 川		淀		8.4	仁 淀 川		伊		野
6.4	11	木 津 川	加	3	茂	8.5	渡 川		具		同
6.5	11		枚		方	8.6	肱 川		大		洲
6.6	大和川		Ŧ		寺						
6.7	紀の川		船		F	9.1	遠賀川		Н	の 出	橋
6.8	新 宮 川	十津川,	風	1	屋	9.2	筑後川		瀬	Ø	下
6.9	11		相		賀	9.3	菊池川		玉		名
6.10	由良川		福	知	Щ	9.4	白 川		代	紙迷	橋
6.11	加古川		井	の	П	9. 5	縁 川		中	甲	橋
						9.6	球 磨 川		人		吉
7.1	吉井川		岩	15 10	戸	9.7	川内川		斧		渕
7.2	旭川		旭川	第 1 ダ	2.	9.8	大 淀 川	本庄川	嵐		田
7.3	高梁川	成羽川	布		寄	9.9	n		柏		Ħ
7.4	太田川		玖		村	9.10	五ヶ瀬川		11		輪
7.5	小瀬川		釜	ケ	原	4.11	大野川		白	滝	橋
7.6	錦川		向;	道ダ	4	9.12	大分川		明	磧	橋
7.7	千代川		行		徳						

国立防災科学技術センター研究報告 第35号 1985年11月

表4.2 代表河川流域の月単位水収支表(1936~1965年,30年間平均値)

 Table 4.2
 Calculated monthly water balance to each of 18 representative river basins (averaged for 30 years from 1936-1965).

Q:流出量,P:降水量(CP・CM で割増),S:積雪水量,SM+R:融雪水量+降雨量,E:蒸発散量 C:変動係数,CM:月降水割増率,CP:年間降水割増率,DM:融雪率,T_M:流域平均気温

1.3 石狩川,石狩大橋

15	shikarig	awa,			Ishika	ricoha	shi,		A=12,6	96 km2					
		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	47	46	63	159	194	110	86	80	88	77	69	54	1,074	TQ=13.64
Q	m ³ /S	223	241	299	779	920	539	408	379	431	365	338	256	432	×10 ⁹ m ³
	с	.10	.10	.18	.27	.25	.16	.26	.31	.24	.19	.16	.16	.16	
	mm/M	194	156	112	88	78	81	125	133	154	123	165	191	1,600	TP=20.31
P	с	. 29	. 35	. 39	. 37	.26	.35	. 39	.44	. 39	. 38	. 31	.23	.14	x10 ⁹ m ³
	CM	2.40	2.40	1.90	1.40	1.00	1.00	1.00	1.00	1.00	1.10	1.60	2.00		CP=0.84
S	mm	475	622	625	348	80	3	0	0	1	34	127	287		
	mm/M	5	10	109	365	346	158	128	133	153	90	72	31	1,600	
SM	DM	.01	.02	.15	.51	.82	.98	1.00	1.00	1.00	.72	.37	.10		
+R	T _{BM}	-11.2	-10.7	-7.0	0.3	6.3	10.0	14.6	16.0	11.0	4.4	-2.6	-8.2		°c
Е	mm/M	20	21	27	51	70	68	71	64	50	32	27	25	526	TE=6.678x109

Model No.201 , N= 1.00

1.5 十勝川, 帯広

Tokachigawa,

Obihiro, A= 2,529.3 km²

		Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	30	30	34	96	144	120	110	114	121	87	57	33	975	TQ=2.466
Q	m ³ /S	28	31	32	94	136	117	104	108	118	82	56	31	78	x10 ⁹ m ³
	с	.05	.05	.19	.23	.53	.37	. 38	.48	.34	. 36	. 31	.25	.23	
	mm/M	116	106	95	98	99	116	153	180	198	124	109	106	1,501	TP=3.796
P	с	.77	.82	.52	.41	.60	.50	.48	.57	.41	.57	.51	.60	.16	×10 ⁹ m ³
	CM	2.00	2.00	1.60	1.20	1.00	1.00	1.00	1.00	1.00	1.10	1.30	1.70		CP=1.28
S	mm	309	415	449	275	83	9	0	0	1	36	95	193		
	mm/M	0	0	61	272	291	190	162	180	197	89	50	8	1,501	
SM	DM	.00	.00	.13	. 50	.78	.96	1.00	1.00	.99	.70	. 35	.05		
+R	T _{BM}	-14.0	-12.9	-7.5	0,0	5.6	9.3	13.6	15.2	10.8	4.0	-3.1	-9.9		°C
Е	nam/M	21	21	26	56	72	59	58	57	53	42	33	28	526	TE=1.330x10 ⁹

Model No.202 , N=1.00

2.4 最上川, 高屋

Mogamigawa,

Takaya, A= 6270.9 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	94	116	213	332	195	106	165	95	107	95	96	106	1.720	TQ= 1.079
Q	m ³ /S	220	301	499	803	457	256	386	222	259	222	232	248	342	x10 ¹⁰ m ³
	с	. 30	.37	.21	. 22	.34	.53	.68	.56	. 55	.36	.25	.26	.15	
	man/M	307	230	173	132	107	154	249	167	183	150	193	299	2.345	TP= 1.471
P	с	.27	.25	. 29	.24	. 34	.47	. 55	.48	. 32	. 33	. 30	.27	.12	x10 ¹⁰ 3
	CM	1.30	1.30	1.20	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.20		CP = 1.09
S	mm	457	543	452	173	5	0	0	0	0	15	83	254		
	ram/M	105	144	265	410	276	159	249	167	183	135	126	127	2,345	
SM	DM	.19	. 22	.38	.71	.99	1.00	1.00	1.00	1.00	.90	.60	. 34		
+K	T _{BM}	-6.2	-5.7	-2.5	4.2	10.2	14.3	18.6	19.7	14.7	7.9	2.1	-3.2		°C
Е	mm/H	18	24	38	64	84	77	79	90	63	42	27	19	625	TE= 3 919-10

Model No. 501 , N= 0.500

2.6 北上川, 登米

Kitakamigawa, Tome, A= 7869.4 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Λug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	53	57	87	193	157	105	125	93	116	88	74	65	1,212	TQ=9.538
Q	m ³ /S	156	185	256	586	467	319	367	273	352	259	225	191	302	x10 ^{9m³}
	с	.23	.31	.26	.32	. 30	. 36	.46	. 29	.42	.21	.15	.18	.14	
	mm/M	195	156	133	120	105	137	207	159	190	130	133	190	1,855	TP= 1.460,
Ρ	c	.27	.28	. 35	.25	. 38	.45	.45	. 35	.32	. 35	.29	.26	.11	x10 ¹⁰ m ³
	CM	1.60	1.60	1.30	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.40		CP=0.96
S	mm	337	415	367	168	17	0	0	0	0	20	70	191		
	mm/M	49	78	182	319	256	153	207	159	190	110	84	69	1,855	
SM	DM	.13	.16	. 33	.66	.94	1.00	1.00	1.00	1.00	.84	.55	.27		
+R	T _{BM}	-7.5	-6.9	-3.4	3.1	8.9	12.9	17.2	18.6	13.5	6.8	.9	-4.6		°C
E	mm/M	26	32	49	71	83	73	73	81	57	42	31	25	643	TE= 5.060x10 ⁹

Model No. 305 , N=0.500

3.1 阿賀野川,馬下

Aganogawa, Maoroshi, A= 6997.0 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	101	118	201	338	193	134	172	122	131	120	100	110	1,839	TQ= 12.87
Q	m ³ /s	264	341	525	912	504	362	449	319	354	313	270	287	408	x10 ^{9 3}
	с	.18	.24	. 32	.20	.29	. 29	. 44	.52	. 49	. 34	.20	.21	.14	
	mm/M	344	246	175	137	117	179	275	197	204	178	174	314	2,541	TP= 17.78
Р	c	. 36	. 38	.25	. 32	.30	. 36	.41	. 49	.42	.43	. 36	.35	.11	x10 ⁹ m ³
	CM	1.30	1.30	1.20	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.20		CP= 1.32
S	mm	483	568	458	157	3	0	0	0	0	18	79	254		
	mm/M	115	162	285	438	271	182	275	197	204	160	113	139	2,541	
SM	DM	.19	. 22	. 38	.74	.99	1.00	1.00	1.00	1.00	.90	. 59	.36		
+R	T _{BM}	-6.1	-5.5	-2.3	4.8	10.3	14.0	18.2	19.3	14.6	7.9	1.8	-2.9		°C
Е	num/M	27	30	43	70	85	83	90	106	69	47	30	22	702	TE= 4.91x10 ⁹ m

Model No. 304 , N= 0.500

3.6 信濃川, 小千谷

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
ļ	mm/M	76	80	131	259	210	161	147	112	116	111	97	89	1,589	TQ=15.64
Q	m ³ /S	279	325	481	984	772	611	540	412	441	408	368	327	496	x10 ⁹ ³
	с	.21	.27	. 23	.28	.25	.18	. 22	.20	.26	.28	.18	.18	.13	
ļ	mm/M	295	242	187	146	124	192	218	150	183	162	145	247	2,291	TP=22.55
Р	с	.24	.22	.28	.27	.34	.37	.37	. 37	. 39	.49	.37	.40	.12] x10 ⁹ m ³
	CM	2.20	2.20	1.80	1.30	1.00	1.00	1.00	1.00	1.00	1.10	1.40	1.90		CP=1.03
S	mm	476	624	542	228	20	0	0	0	0	22	76	238		
	mm/M	57	94	270	459	332	21.3	218	150	183	140	92	85	2,291	
SM	DM	.11	.14	.33	.67	.94	1.00	1.00	1.00	1.00	.86	. 55	. 27		1
+R	T _{BM}	-7.8	-7.3	-3.3	3.4	9.0	13.2	17.6	18.6	13.8	7.1	.9	-4.6		°C
Е	tam/H	27	30	43	70	85	83	90	106	69	47	30	22	702	$TE = 6.91 \times 10^9$

Model No.105 , N=0.500

国立防災科学技術センター研究報告 第 35 号 1985 年 11 月

4.9 利根川,栗橋

Tonegawa, Kurihashi, Δ=8588.0 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	34	35	48	69	81	100	123	134	140	117	73	45	999	TO=8.579
Q	m ³ /S	109	124	154	229	260	331	394	430	464	375	242	144	272	x10 ⁹ m ³
	с	.15	.15	.24	. 24	.26	.32	.42	.33	.42	. 32	.26	.27	.18	
j	mm/M	94	89	88	105	132	204	228	239	205	157	70	64	1,674	TP=14.380
Ρ	с	. 44	.41	. 37	.34	. 38	. 38	.40	. 31	.47	.48	.44	. 36	.12	10^{9}m^{3}
	CM	1.30	1.30	1.20	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.20		CP=0.89
S	mm	109	142	124	59	5	0	0	0	0	12	28	54		
	mm/M	39	57	106	170	185	209	228	239	205	145	54	38	1,674	
SM	DM	.27	. 30	.46	.74	.97	1.00	1.00	1.00	1.00	.92	.66	.41		1
+R	T _{BM}	-4.6	-4.1	-0.8	4.9	9.6	13.5	17.6	18.4	14.3	8.4	3.2	-1.8		°C
E	num/H	41	46	61	68	73	65	72	80	54	42	36	37	675	TE=5.797x10 ⁹

Model No. 202 , N= 0.333

4.15 富士川,清水端

Fujikawa, Shimizubata, A=2121.0 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	46	44	55	77	88	114	103	101	116	110	76	56	987	TQ=2.093
Q	m ³ /S	36	39	44	63	70	93	82	80	95	87	62	44	66	×10 ^{9m³}
	с	.20	.24	.27	.25	.27	. 49	.43	.44	. 35	. 43	.26	.24	.20	
	mm/M	58	76	104	127	151	234	207	209	232	193	80	58	1,730	TP=3.669
Р	с	. 69	.54	. 41	. 35	.50	.56	. 52	. 49	.51	,61	.50	.61	.18	x10 ⁹ m ³
	CM	1.20	1.20	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10		CP=1.35
S	mm	107	139	134	70	13	0	0	0	0	24	44	72		
	mm/M	23	44	110	191	207	247	207	209	232	168	60	30	1,730	
SM	DM	.17	.23	.44	.73	.95	1.00	1.00	1.00	1.00	.87	.58	. 29		
+K	TBM	-6.6	-5.3	-1,1	4.6	9.0	13.1	17.3	17.7	13.8	7.4	1.5	-4.1		°C
E	tam/ř1	42	44	61	70	80	73	90	99	64	47	36	37	743	TE=1.576x10 ⁹

Model No. 103 , N=0.333

5.1 狩野川, 徳倉

Kanogawa,	Tokura,	A=568.0 km ²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mn:/M	112	112	140	186	190	258	236	228	253	237	174	136	2,263	TQ=12.85
Q	m ³ /S	24	26	30	41	40	57	50	48	55	50	38	29	41	x10 ⁸ m ³
	с	.18	. 31	.25	.31	.32	.48	.68	. 52	.44	.43	.16	.19	.21	
	mm/M	107	146	227	255	275	381	325	352	368	298	174	117	3,025	TP=17.18
Р	с	. 58	.59	.36	. 34	.44	.51	. 78	.53	.44	.54	.45	.46	.20	x10 ⁸ m ³
	CM	1.20	1.20	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10		CP=1.29
S	mm	54	72	61	4	0	0	0	0	0	0	6	33		
	mm/M	86	129	237	313	278	381	325	352	368	298	168	90	3,025	
SM	DM	.60	.63	. 79	.99	1.00	1.00	1.00	1.00	1.00	1.00	.96	.72		1
+R	T _{BM}	1.9	2.6	5.7	10.5	14.7	18.6	22.4	23.2	19.9	14.2	9.3	4.4		°c
E	nm/H	42	45	62	70	76	76	89	103	71	53	39	36	762	TE= 4 328×108

Model No. 105 , $^{\rm N=}\,0.500$

日本の河川流域の月単位水収支と水文特性(第2報) — 植原・佐藤

5.8 木曽川,鵜沼

Kisogawa, Unuma,

A=4683.8 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	69	74	121	237	254	282	263	182	213	162	112	87	2,056	TQ=9.630
Q	m ³ /S	121	143	212	428	444	510	460	318	385	283	202	152	305	x10 ⁹ m ³
	с	. 29	.47	.42	.35	.27	.42	.48	.42	. 41	.52	.19	.24	.19	1
P	mm/M	173	183	225	234	224	361	364	263	302	214	149	154	2,847	TP=13.33
Р	с	. 34	.46	. 39	.28	. 38	.40	. 45	. 44	. 38	.60	.43	.43	.15	x10 ⁹ m ³
	CM	1.80	1.80	1.40	1.10	1.00	1.00	1.00	1.00	1.00	1.10	1.20	1.50	1	CP=1.13
S	mm	238	311	302	154	19	0	0	0	0	19	61	136	1	
	mm/M	71	111	234	382	359	380	364	263	302	196	107	80	2,847	
SM	DM	.22	.25	.43	.71	.95	1.00	1.00	1.00	1.00	.91	.63	. 37		1
+R	T _{BM}	-5.5	-4.9	-1.4	-4.2	9.0	13.1	17.3	18.2	14.2	8.2	2.6	-2.7		°ċ
E	nm/M	38	43	63	74	81	82	96	107	71	60	41	35	791	TE= 3.705x10

Model No.203 , N=0.500

6.5 淀川,枚方

A=7281.0 km² Yodogawa, Hirakata,

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	67	70	83	103	97	128	138	110	135	112	83	68	1,193	TQ=8.686
Q	m ³ /S	182	211	226	289	264	360	375	299	379	304	233	185	275	x10 ⁹ m ³
	с	.18	.19	.19	.22	.27	.43	.48	.51	.54	.44	.26	.23	. 20	
	mm/M	114	106	115	134	150	229	230	178	223	148	90	93	1,810	TP=13.18
Р	C	.18	. 31	.28	.31	. 40	. 42	.43	.61	.50	.58	.37	.26	.15	x10 ⁹ m ³
	CM	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		CP=0.97
S	mm	73	82	58	6	0	0	0	0	0	0	9	36		
	mm/M	77	97	138	186	156	229	230	178	223	148	82	66	1,810	
SM	DM	. 52	.54	.71	.97	1.00	1.00	1.00	1.00	1.00	1.00	.90	.65		
+R	T _{BM}	.3	.8	4.1	9.9	14.8	18.8	23.2	24.1	20.0	13.7	8.0	2.9	******	°C
E	mm/M	14	27	41	56	67	69	84	97	63	47	30	22	617	$TE = 4.492 \times 10^9$

Model No. 203 , N=1.000

6.9 新宮川,相賀

Shingugawa, Oga, A=2300.0 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	60	72	115	222	195	242	239	251	303	203	108	77	2,086	TQ=4.798
Q	m ³ /S	52	68	99	197	167	215	205	216	269	174	96	66	152	×10 ⁹ m ³
	c	. 39	.54	.43	.38	.42	. 59	.63	.65	.72	.68	.26	. 32	.26	1
P	mm/M	142	174	218	230	230	329	341	369	394	251	142	127	2,946	TP=6.776
P	с	. 50	.50	. 34	.34	.45	. 50	.53	.55	.64	.66	.41	. 46	.19	x10 ⁹ m ³
	CM	1.80	1.80	1.40	1.10	1.00	1.00	1.00	1.00	1.00	1.10	1.20	1.50		CP=0.86
S	nun	126	165	158	41	0	0	0	0	0	0	32	71		
	mm/M	87	134	225	348	270	329	341	369	394	251	110	88	2,946	
SM	DM	. 41	.44	. 58	. 89	1.00	1.00	1.00	1.00	1.00	1.00	.77	.55		
+R	T _{BM}	-1.8	-1.2	1.7	8.0	12.3	16.1	20.5	21.2	17.2	10.8	5.4	1.0		°C
E	unu/M	51	53	69	73	78	81	102	114	77	65	49	48	860	TE=1.978x10

Model No. 301 , N= 0.333

国立防災科学技術センター研究報告 第35号 1985年11月

7.1 吉井川, 岩戸

Yoshiigawa, Iwato, A=1717.0 km²

3		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	41	50	78	142	113	162	160	81	1 39	83	55	43	1,146	TQ= 1.968
Q	m ³ /S	26	35	50	94	72	107	103	52	92	53	36	28	62	×10 ⁹ m ³
	С	. 47	.44	.49	. 43	. 47	. 56	. 59	.62	.67	. 59	.29	.36	. 26	
	mm/M	106	123	141	161	167	241	246	154	227	127	79	74	1,846	TP= 3.170
Р	с	. 46	.43	.43	. 34	. 38	.43	.46	. 53	.49	.50	.41	.55	.18	x10 ⁹ m ³
	CM	1.60	1.60	1.30	1.10	1,00	1.00	1.00	1.00	1.00	1.00	1.10	1.40		CP= 1.10
S	mm	75	101	88	20	0	0	0	0	0	0	13	35		
-	mm/M	66	96	155	229	1.86	241	246	154	227	127	67	52	1,846	
SM	DM	. 46	.48	.64	.92	1.00	1.00	1.00	1.00	1.00	1.00	.84	. 59		
+R	T _{BM}	-0.8	-0.3	2.8	8.4	13.1	17.3	21.9	22.7	18.6	12.2	6.7	1.8		°C
Е	um/H	30	33	52	63	78	73	87	103	68	53	33	27	700	TE= 1.202x10

Model No. 501 , N= 0.333

7.9 江の川,都賀

Gonokawa, Tsuga, A=2788.4 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	70	84	96	118	96	148	170	79	122	84	63	58	1,189	TQ=3.315
Q	m ³ /S	73	97	100	127	100	159	177	82	131	87	68	60	105	x10 ⁹ m ³
- ⁶⁰	с	. 28	. 29	. 30	.36	.43	.62	.62	.53	.60	. 54	. 36	. 33	.23	
	mm/M	163	138	126	135	145	240	265	143	218	119	87	103	1,882	TP=5.248
Р	c	. 42	.25	. 32	.36	.45	.44	. 49	.53	.47	.56	.43	. 33	.16	×10 ^{9m³}
	CM	1.20	1.20	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10		CP=0.96
S	man	86	98	70	15	0	0	0	0	0	0	7	32		
	mm/M	109	126	155	189	160	240	265	143	218	119	80	79	1,882	
SM	DM	.56	.56	.69	.92	1.00	1.00	1.00	1.00	1.00	1.00	.92	.71		
+R	TBM	1.3	1.3	3.9	8.5	12.6	16.4	21.1	22.0	18.1	12.5	8.3	4.2		°C
E	tam/21	24	27	47	60	79	74	91	106	68	54	36	27	693	TE=1.932x10 ⁹

Model No. 308 , N=0.333

8.1 吉野川,池田

Carl and a set of the set of		
Yoshinogawa,	Ikeda,	A=1979.5 km ²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	49	55	88	180	157	241	264	233	306	161	82	58	1,873	TQ=3.708
Q	m ³ /S	36	45	65	137	116	184	195	172	234	119	63	43	118	x10 ⁹ m ³
36	с	. 37	.37	.48	.42	.41	.52	.67	.52	.69	.91	.30	.24	.23	
	mm/M	99	123	154	218	214	324	366	345	398	218	121	87	2,667	TP=5.279
Ρ	c	.43	.43	.36	. 33	.37	.44	.56	.41	. 59	.77	.40	.43	.18	$x10^{9}m^{3}$
	CM	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		CP=1.10
S	man	77	98	80	23	0	0	0	0	0	0	18	43		
	mm/M	65	102	172	275	237	324	366	345	398	218	103	61	2,667	
SM	DM	. 44	.50	.68	.92	1.00	1.00	1.00	1.00	1.00	1.00	.84	.58		
+R	T_{BM}	-1.1	0.0	3.5	8.5	12.5	15.7	19.6	20.3	17.5	12.0	6.8	1.6		°C
Е	nun/H	40	45	64	63	78	70	92	106	76	69	50	41	794	TE=1.572x1(

Model No. 405 , N= 0.333

日本の河川流域の月単位水収支と水文特性(第2報) ― 植原・佐藤

8.5 渡川, 具同

Watarigawa,

Gudō, A=1807.6 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
	mm/M	51	60	88	187	187	278	313	298	295	159	87	59	2,062	TQ=3.727
Q	m ³ /S	34	45	59	130	126	194	211	201	206	107	- 61	40	118	x10 ⁹ m ³
	с	. 38	.50	.54	.50	.48	.58	.82	.55	.72	.78	.40	.34	.24	
	mm/M	100	125	159	245	267	356	404	409	373	213	119	87	2,856	TP=5.163
P	с	. 39	.51	. 39	. 39	. 38	.47	.68	.44	.60	.66	.51	.52	.18	x10 ⁹ m ³
	CM	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		CP=1.06
S	mm	44	56	39	1	0	0	0	0	0	0	2	20		
	mm/M	76	113	175	283	268	356	404	409	373	213	117	69	2,856	
SM	DM	.63	.66	.81	1.00	1.00	1.00	1.00	1.00	1.00	1.00	.98	.76		1
+R	T _{BM}	2.5	3.1	6.2	11.0	14.9	18.4	22.6	23.2	20.1	14.6	10.0	5.3		°C
Е	nam/M	40	45	64	63	78	70	92	106	76	69	50	41	794	TE=1.435x10

Model No.407 , N= 0.333

9.2 筑後川, 瀬の下

		1247
Chikugogawa,	Senoshita,	A=2315.0 km ²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
Q	mm/M	48	52	65	106	118	228	253	168	164	105	74	55	1,435	TQ= 3.322
	m ³ /S	41	50	56	95	102	204	219	145	146	91	66	48	105	x10 ⁹ m ³
	с	.22	.26	.30	,48	.46	.73	.63	.54	.46	.36	. 28	.26	.25	
P	mm/M	73	101	119	178	209	375	383	234	251	105	80	68	2,174	TP= 5.033
	с	.45	.48	.40	.54	.47	.56	.56	.62	. 48	.66	.51	. 56	.18	×10 ⁹ m ³
	CM	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		CP=1.03
S	mm	47	65	52	8	0	0	0	0	0	0	9	26		
	mm/M	53	82	132	222	217	375	383	234	251	105	71	51	2.174	
SM +R	DM	.52	.55	.71	.96	1.00	1.00	1.00	1.00	1.00	1.00	.87	.64		
	T _{BM}	.3	1.0	4.2	9.3	13.7	17.5	22.1	22.4	18.5	12.4	7.5	2.8		°C
Е	mm/M	29	35	57	61	80	76	98	100	74	60	39	30	739	TE=1.711x10 ⁹

Model No. 202 , N= 1.000

9.9 大淀川, 柏田

Öyodogawa, Kashiwada, A=2126.0 km²

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	Note
Q	mm/M	69	71	90	136	168	313	317	277	235	156	119	86	2,035	TO=4.326
	m ³ /s	55	62	71	112	133	257	252	220	193	124	98	68	137	x10 ⁹ ³
	с	.20	.27	. 32	. 38	. 32	. 53	. 54	.41	.51	. 33	.26	.22	.24	1
	mm/M	78	117	156	248	304	493	463	395	282	141	104	72	2,853	TP=6,065
P	с	. 48	. 45	. 44	. 44	. 39	. 42	. 54	.41	.51	. 33	. 26	. 22	. 24	x10 ⁹ m ³
	CM	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		CP=1.05
S	mm	33	44	28	0	0	0	0	0	0	0	1	17		
-	mm/M	62	106	173	276	304	493	463	395	282	141	102	57	2,853	
SM	DM	.63	.69	.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	.98	.75		
+R	T _{BM}	2.7	3.8	7.0	11.4	15.2	18.5	22.7	22.8	20.0	14.5	9.9	5.0		°C
E	tam/M	41	46	67	63	80	74	111	98	80	69	50	39	818	$TE=1.739 \times 10^{9}$

Model No.102 , N=1.000

国立防災科学技術センター研究報告 第35号 1985年11月

表4.3 狩野川,新宮川の月単位水収支モデル

Table 4.3 Monthly water balance models of Kanogawa-Tokura and Shingugawa-Ooga.

水系名	河川名	流	域	- 104 Ju 400 Juli 201	蒸 発量	気 温	流域平	降水割增 係 数		流出	適合度変判定係数	
		流量	面積(km²)	IPI 小 睨 冽 //f	> >	観測所	均高度 係数(n)	CM	C P	モデル 番号	CRE	F
狩野川	狩野川	徳倉	568.0	湯ヶ島,伊豆長岡,三島	中部D	三島	1/2	1.20	1.29	105	0.234	0.055
新宮川	新宮川	相賀	2,251.0	荒神山, 前鬼, 三里, 寺垣内	近畿A	奈 良	1/3	1,80	0.86	301	0.450	0.124

図4.1 代表河川流域の月単位水収支(1936~1965年, 30年間平均値)

Fig. 4.1 Monthly water balance to each of 18 representative river basins (averaged 30 year from 1936 to 1965).

図4.1 代表河川流域の月単位水収支(1936~1965年,30年間平均値).

Fig. 4.1 Monthly water balance to each of 18 representative river basins (averaged 30 years from 1936 to 1965).

図4.1 代表河川流域の月単位水収支(1936~1965年,30年間平均値).

Fig. 4.1 Monthly water balance to each of 18 representative river basins (averaged 30 years from 1936 to 1965).

図 4.1 代表河川流域の月単位水収支(1936~1965年, 30年間平均値).

Fig. 4.1 Monthly water balance to each of 18 representative river basins (averaged 30 years from 1936 to 1965).

図4.1 代表河川流域の月単位水収支(1936~1965年, 30年間平均値).

Fig. 4.1 Monthly water balance to each of 18 representative river basins (averaged 30 years from 1936 to 1965).

年間では5月を最低とする凹型となる.しかし,冬期の厳寒のため冬期の融雪は極めて少な く、そのため殆んど積雪となり、3月末には積雪水量は最高の620mmをこえる。この積雪 は4・5月に急速に融けて流出し、融雪の影響は6月でも50%程度あり、7月にも僅かに残 存する.このような降水、積雪・融雪特性を反映して流出は5月をピークとし、4・5月の 卓越した融雪流出と冬期の渇水との極めて対照的な年間凸型の流出特性を示すが、台風期の 影響は9月の小さなピークとして現われている。

+勝川の場合は石狩川に比して相当異なる特性を示す。既ち降水は梅雨,台風時期の7・ 8・9月が冬期よりも可成り多く、9月をピークとし、春期に最小となる.この流域は梅雨前 線が季節と共に北上し消滅する末期の影響と、台風の影響が可成りあるとみられる.秋期末 から冬期にかけては、比較的平均的な降水があるが、冬期、特に1・2月は融雪が全くないた め、石狩川と同様に積雪水量は3月末には最高の450 mm に達し、融雪は5月をピークとし て4・5・6月に集中し、7月にもその影響は少し認められる.このため、流出の特性は石狩川 のそれに比して、夏期の流出が多く、9月のピークは5月の融雪流出145 mm に対し、120 mm であり、年間2つのピークをもつ流出特性となっている.

(2) 東北(最上川・高屋,北上川・登米)

最上川の降水は石狩川と同様に冬期に多く1月最大5月最小を示すが、梅雨の影響が可成 り大きく、7月にも降水のピークがあり、9月にも小さなピークがみられる。冬期の気温は石 狩川に比して可成り高いため、融雪量も多いが降水量も多いため積雪水量は2月末に最大の 540 mm 程度となり、4月をピークとして3・4・5月に融雪が集中する。融雪は6月まで少し 残るが、北海道に比して1ヶ月早い。流出は降水及び積雪特性を反映して4月に大きなピー クを持ち、7月、9月に小さいピークを持っている。

北上川は、最上川に比して、丁度石狩川と十勝川の対照的な特性と同様な傾向を示し、太 平洋側と日本海側の対比として興味深い.しかし十勝川に比して、冬期降水量が可成り多く、 また梅雨が顕著に現われており、降水のピークは7月であるが9月及び12・1月の降水量と の差はあまり大きくない.積雪・融雪の傾向は最上川と同様であり、2月末の積雪水量は410 mm 程度に達する.流出は4月の融雪流出が大きなピークを形成するが7月・9月も明瞭な ピークとして現われている.

(3) 北陸(阿賀野川·馬下,信濃川·小千谷)

阿賀野川は支川只見川を中心として,また信濃川は支川魚野川を中心として,我国でも最 大の豪雪地帯に位置するため,積雪・融雪の影響は両者とも卓越している.

阿賀野川の降水特性は,最上川の振幅を少し拡大したような相似的パターンを示すが,11 月及び2月の降水量が12月及び1月のそれに比して相対的にやや少ない.流出の特性も最上 川と類似している.

信濃川は阿賀野川に比して流域の標高が高く、冬期の流域平均気温で約1.7°C程度低いた

国立防災科学技術センター研究報告 第35号 1985年11月

め、冬期の融雪が少なく、降水量は阿賀野川に比して少ないにも拘らず、2月末の積雪水量の ピークで阿賀野川 570 mm 程度に対し、620 mm 程度と大きく、また融雪は6月にも少しみら れる、

融雪水量は4月のピークで阿賀野川438 mm に対し信濃川は459 mm であるが,流出量は 4月のピークでそれぞれ,338 mm,259 mm で阿賀野川の方が遙かに多くなっている.これ は流出モデルの型で304 及び105 と信濃川の方が保水機能の大きいことによるものと思われ る.これは7月の梅雨,9月の台風の影響が流出の上では阿賀野川には可成り明瞭に現われて いるのに対し,信濃川は若干その影響が認められる程度であることにも現われている.

(4) 関東(利根川・栗橋,富士川・清水端)

共に太平洋側の河川であり、降水特性は梅雨、台風時期に多い年間凸型の典型的なタイプ を示すが、年降水量は他地域に比して少なく、1,600~1,700 mm 程度である。

利根川は冬期,水源山地に可成の積雪があり2月末の積雪水量のピークは142 mm とな る.この積雪は4月を中心とした融雪となるが年間の流出からみて,ピークを構成する程に はなっていない.一方,8月の降水ピークは,荒川,思川にもみられ,関東西北山地に発生す る雷雨の影響が大きいものと推察される.栗橋の流出量のピークは9月で,降水のピークと ずれている点については,後節で利根川水系の水収支を詳しく検討するのでそれにゆずるが, 主として栗橋上流で取水され,流域外に出る農業用水の影響とみられる.従って栗橋流域の 水収支モデルには,これらの用水取水の影響を含んだモデルとなっており,この点は水収支 の結果を評価する場合十分配慮する必要がある.

富士川は利根川に比して冬期の降水量は少ないが,流域の標高が高いため,2月未の積雪水 量は利根川とほぼ同じ139mmとなっており,また6月の融雪の影響は利根川より若干多く なっている。夏・秋期は6月・9月に降水のピークが現われ,利根川が8月であるのに比して 可成りの違いがみられ,これを反映して流出も富士川では6月,9月の2つのピークとなって いる。6月は(SM+R)が9月のそれに比して若干多いが,流出は9月のピークの方が大き い。これは蒸発散量が6月は9月に比して大きいこと及び8月の降雨量が5月の融雪水量+ 降雨量よりも多いことが影響しているものと考えられる。

(5) 中部(狩野川・徳倉,木曽川・鵜沼)

狩野川は南海型の気候区に属すると共に富士山の一部の積雪・融雪の影響も含む流域とし て選定した。降水の年間パターンは富士川を拡大した型となっているが、年間降水量では 3,025 mm と富士川の1,730 mm の1.75 倍である。

積雪の影響は富士川に比して遙かに少ない,流出のパターンも富士川を拡大した型で6月・9月の2つのピークを有している.

木曽川は降水特性としては、6・7月の梅雨が卓越し9月の台風も顕著であって大局的には 年間凸型に属するが、冬期・春期の降水量も可成り多く、年間降水量は、2,847 mm に達する。 この流域は標高が高いため積雪も多く,積雪水量は2月末のピークで310mmに達し,融雪 は4・5月を中心とし,6月にもその影響が若干残る。そのため流出は6月の大きなピークと 9月のピークを持つ山型となるが,4月,5月には融雪の影響は相当大きく,4月から9月ま では月流出が180~280mmと非常に豊富である。

(6) 近畿(淀川・枚方,新宮川・相賀)

淀川は琵琶湖を含む宇治川流域が日本海側の気候の影響で11月から3月までの降水量が 多く,年間で 1,950 mm 程度に達するが,木津川及び桂川流域の降水量が少ないため,枚方 での流域では 1,810 mm 程度になり、全国的にみても関東・中国地方と並んで降水量は少な い地域と云える。降水の年間パターンは、6・7月及び9月が卓越し、年間凸型ではあるが、 前述した冬期の降水が加わるため、冬期には1月を最大とする日本海側の降水特性が若干み られ、8月を除けば利根川と類似したパターンとなっている。この流域は標高が低いため、琵 琶湖流域では冬期の降雪が多いが積雪とはならず, 2 月未の積雪水量は 82 mm 程度と非常に 少ない.融雪は3・4月に集中し5月は若干みられる程度である。以上の降水等の特性を反映 して、流出は7月及び9月の緩いピークと4月に融雪の小さいピークを持つ、年間凸型のな だらかなパターンとなっている。この流出パターンは、冬期融雪の多いこと及び琵琶湖の貯 留効果による平均化の効果によるものとみられ、降水パターンの類似する利根川と対比する と興味深い。流出モデルでは利根川・栗橋は 202 であり、淀川・枚方は 203 で殆んど同じで ある. 流域の地質構成からみると前節で示したように保水性の大きい第四紀地質 (Qv と Q), やや大きい花崗岩(G)、やや少ない中・古生層(R, PM)、小さい第三紀地質(Ts, Tv)の順 でみると,利根川が 51.0%, 7.7%, 25.4%, 15.9%に対し, 淀川は, 34.4%(琵琶湖を含む), 18.3%, 39.5%, 7.8%となり、 こはそれぞれ 3.58, 3.89 である. このことは流域の保水特 |性は淀川の方がやや小ではあるが,同じⅡ型に属しており,流出特性は類似しているといえ これは琵琶湖に第四紀火山性地質(Q_v)と同じ保水性を与えて評価した結果であるので、 以上のことを総合的に考慮すると,琵琶湖の流出に対する平均化の貢献度は,第四紀火山性 地質と同等以上と評価することができると考えられる。

新宮川は気候区分からは狩野川と類似した特性を期待していたが、年間降水量が2,950 mm 程度と狩野川に比して若干少ないといった量的な豊富さを除くと、降水パターンは可成 り異った面がみられる.既ち両者とも夏・秋期の降水の卓越していることは勿論であるが、 狩野川が6月の梅雨がピークになるのに対し、新宮川は9月の台風期がピークを構成してお り、台風の影響を多く受けているとみられる.更に、冬期については、狩野川よりも降水は 多く、流域標高が高いため可成りの積雪があり、積雪水量は2月末のピークで165 mm 程度 に達する.この融雪は4月に急激に起り、降雨と合せて7月の梅雨のピークを若干上廻る程 になる.以上の降水等の特性を反映して、流出のパターンは9月に鋭いピークを持ち、4月に 融雪の小ピークを持つ年間凸型のパターンを示す.狩野川に比して流出型が鋭角であるのは、

-211 -

流出モデルが狩野川 105 に対し 301 とこの流域の保水性が相対的に小であることによるとみ られる。

(7) 中国(吉井川・岩戸, 江の川・都賀)

吉井川は7月にピークをもつ6・7月の梅雨と9月の台風時期の降水が卓越した年間凸型 の降水特性を示すが8月の降水は4・5月より少ない。一方冬期の積雪水量は2月のピークで 100 mm 程度であり、4月に集中的に融雪が起るため、4月の降雨と融雪との合計は9月の降 水量に、また3月のそれは8月の降水量に匹敵する。以上の降水等の特性を反映して、流出 の特性は6・7月のピークとそれより若干低い4月及び9月のピークからなる複雑なパター ンを示し、8月は降水量の少ないことに加えて蒸発散量が最大となることから、流出量は3月 及び10月程度に落ち込み、蒸発散量よりも少ないと評価される。吉井川の流出モデルは501 で保水性が小であるため、降水及び蒸発の変動が流出パターンに大きく影響しているとみら れる。

江の川は冬期を除いて吉井川の降水特性と類似している。冬期は日本海側の降水特性を示 し特に1月の降水量は6・7・9月に次いで多い。融雪はこの流域の標高が低いことを反映し て、淀川と同様に冬期にも多く、積雪水量は2月末のピークで98mm程度であり、これが4 月をピークとした3・4・5月にわたって融雪となる。以上の降水等の特性を反映して吉井川 と類似はしているが冬期の流出がそれより多い流出パターンを示している。

(8) 四国(吉野川·池田,渡川·具同)

吉野川と渡川は共に南海気候区に属しているため、年間の降水量はそれぞれ2,670 mm, 2,860 mm 程度と多く、降水の年間パターンも大局的には類似した年間凸型であり、6~9月 の降水量が卓越している.しかし、吉野川は9月が最大のピーク、7月が少し低いピークを形 成しているのに対し、渡川は8月が単独のピークを形成している.また、10~3月までの降水 量は両川共殆んど同じであるが、4・5月の降水量は渡川の方が可成り多い.積雪は吉野川の 方が多く、2月末の積雪水量のピークは、吉野川 98 mm、渡川 56 mm 程度となっており、そ のため両川とも4月をピークとして3・4・5月に融雪の影響が流出に現われるが、吉野川の 方がその度合は大きい.このような降水等の特性を反映して流出の年間パターンは、吉野川 では9月の最大ピークと7月の少し低いピーク及び4月の融雪による小ピークをもつ凸型で ある.一方渡川は8月の蒸発散量のピークにより、流出のピークは7月となるが、6~9月の 間 300 mm 程度の豊富な流出が継続している.両川とも流出モデルはIV型に属すため10~3 月の期間は、降水量と同じく流出量も殆んど同じとなっている.

(9) 九州(筑後川・瀬の下,大淀川・柏田)

筑後川の年間降水量は2,170 mm 程度であるが,6・7月の梅雨による降水が卓越してお り,この2ヶ月で758 mm と35%に達する.これに対して8・9月の台風時期の降雨は485 mm で6・7月の64%と少ない.冬期は降水量が少なく,積雪水量は2月末のピークで65 mm

-212 -

程度であり、4月を中心として 3・4・5 月の融雪の影響が流出にも現われている。以上の降水 等の特性を反映して降水及び流出の年間のパターンは7月をピークとし、6・7月が卓越した 凸型となっている。

大淀川は南海型で年間降水量は2,850 mm 程度と多いが,特に6・7・8月に集中し,この 3ケ月で1,350 mm 程度と年間の47%に達している.これに対し,9月は5月より少い.大淀 川の地理的位置から考えて,梅雨の影響は5月末から7月,台風は9月より8月の方が降水 に対する影響が大きいとみられる.冬期の降水量は少く,積雪水量も2月末のピークで44 mm 程度と評価され,3・4月の融雪は流出に若干の影響を与えている.降水量は6月がピー クで7月より多いが,本流域の保水性は大きく,流出モデル型は102であることから,蒸発 散量が大きいにも拘らず,流出のピークは7月となっており,降水,流出共単独ピークをもっ た年凸型のパターンを示している.

4.3 大河川水系の河川水の収支

大きな水系については、本川及び主要支川の流域について月単位水収支モデルを作成し計 算を行っているので、水系を通した河川水の水収支を検討することとした.

この試みは、水系内の水収支モデルの斉合性を検証し、また、流出観測点の上流で取水さ れ、観測点をバイパスするかあるいは下流観測点に還流する利水量を概略評価することが可 能か否かを検討しようとしたものである.

ここでは、利根川水系と信濃川水系の例を示す.

(1) 利根川水系の河川水の収支

表 4.4 は、1936 年~1965 年の 30 年間について、利根川水系の本川流域(岩本、八斗島、 栗橋)及び支川流域(村上、岩鼻、早川田、乙女、水海道、黒子)の 30 年間の水収支につい て、月単位水収支モデルで計算した結果の各月流出量の 30 年間平均値を用いて、上流から順 次河川水の水収支を計算したものである。ここで流出量は季節毎に集計して用いており、冬 期 12~2 月、春期 3~5 月、夏期 6~8 月、秋期 9~11 月である。

表4.4 の(5)欄は八斗島の水収支モデルによる計算流出量(6)に対して、その上流本支川流域 の計算流出量と残流域の推定値との合計流出量を示したもので、残流域の推定を岩鼻流域の 比流出で行ったという問題はあるが、(6)欄は(5)欄に比して冬・春期約 95%、夏・秋期約 79% 程度となっている。流量に換算すると、冬期 4.9 m³/sec,春期 10.3 m³/sec,夏期 59.6 m³/ sec、秋期 50.2 m³/sec の不足となる。

科学技術庁資源局資料第57号利根川水系における水収支(1964年9月)⁷によれば、八斗島の上流,前橋市地先の板東合口から取水される広瀬・桃木用水その他は、約10,000 haの水田を灌がいする大用水であり、用水分水後に広瀬川を通って八斗島地点をバイパスする流量は、冬期及び夏期の渇水時の調査によって、冬期10 m³/sec,夏期20 m³/sec 程度と報告され

-213-

ज्य ।।। देव	V# 1-4	法研究研		流 出	出 量	×10 ⁶ r	n ³	(HL +H/
利用名	而或	流或面積	冬期	春期	夏期	秋期	年 間	1 闻 考
利根川	岩 本(1)	1,670.0km²	379.09	913.49	801.60	641.28	2,735.46	
吾 妻 川	村 上(2)	1,245.0	246.51	374.75	563.99	514.19	1,699.44	以上
鳥 川	岩 鼻(3)	1,188.0	73.66	103.34	426.49	364.72	968.21	流或面積合計 4,103.0km ²
	八斗島に対する 残流域 (4)	1,047.0	64.92	91.05	375.87	321.43	853.27	岩鼻比流出を 用いる
	(1)+(2)+(3)+(4) (5)	5,150.0	764.18	1,482.63	2,167.95	1,841.62	6,256.38	
利根川	八 斗 島(6)	5,150.0	726.15	1,400.80	1,694.35	1,447.15	5,268.45	
	(5)—(6) (6)/(5)		38.03 0.95	81.83 0.94	473.60 0.78	394.47 0.79	987.93 0.84	
渡良瀬川	早川田(7)	1,046.0	79.50	131.80	327.39	334.72	873.41	流域面積
思 川	乙 女(8)	760.0	80.56	145.92	400.52	340.48	967.48	(5)+(7)+(8) =6,956km ²
	栗橋に対する残 流域 (9)	1,632.0	144.63	250.95	657.74	610.11	1,663.42	(7)+(8)の比流 出を用いる
	(5)+(7)+(8)+(9) (10)	8,588.0	1,068.87	2,011.30	3,553.60	3,126.93	9,760.69	
利根川	栗 橋(11)	8,588.0	979.03	1,700.42	3,065.92	2,834.04	8,579.41	
	(10) — (11) (11)/(10)		89.84 0.92	310.88 0.85	487.68 0.86	292.89 0.91	1,181.28 0.88	
	(12)の流量 (m ³ /秒)		11.6	39.1	61.4	37.3	37.5	
鬼怒川	水海道(13)	1,822.0	267.83	342.54	604.90	606.73	1,822.00	
小貝川	黒 子(14)	580.0	80.04	104.40	255.20	229.10	668.74	
	全流域に対する 残流域 (15)	5,850.0	807.28	1,052.98	2,573.95	2,310.70	6,744.91	黒子比流出を 用いる
全流域計	(10) + (13) + (14) + (15) (16)	16,840.0	2,224.02	3,511.22	6,987.65	6,273.46	18,996.35	
	(16)の%		11.7	18.5	36.8	33.0	100.0	

表4.4 利根川水系季節別河川水収支総括表(1936~1965年, 30年間平均値) Table 4.4 Water balance of the Tone river system to each season.

日本の河川流域の月単位水収支と水文特性(第2報) ― 植原・佐藤

ている. これに対する板東合口の取水量はそれぞれ 40 m³/sec, 35 m³/sec であった.

八斗島の水収支からみた結果は、上記調査資料が相当な渇水状況の時のデータであること から、広瀬川を通って八斗島地点をバイパスした季節別の平均流量の不足が現われたものと 概ね推測できると思われる.

同様にして(10)欄には(11)の栗橋の季節別流出量に対比されるべき流出量が推算されており栗橋の流出量はそれに対して春・夏期 85%程度,秋・冬期 91%程度となっている。即ち不足は流量に直して,冬 11.6 m³/sec,春 39.1 m³/sec,夏 61.4 m³/sec,秋 37.3 m³/sec となる。

栗橋上流で取水され、中川流域に入る農業用水は、見沼代用水、葛西用水等があるが、前 記資料では、夏期渇水時で見沼代 40 m³/sec, 葛西 15 m³/sec が取水されている。

従って水収支の不足分夏期 61.4 m³/sec は,これら農業用水の取水量と良く一致しており, 表 4.4 に示す結果は相当精度の良いものと評価できると思われる.

問題は、この様に利水の影響が水収支モデルに組み込まれてしまうことであり、その修正 が必要となることである。

鬼怒川についても、水海道上流の農業用水の取水は可成り大きく、その影響を含んでいる とみられるが、表 4.4 では、一応水系全体の年間の流出量を推算し、年間約 190 億 m³ という 結果を得た。

300	NAR 1-10	**-1- * -2:5#		流 出	出 显	$ imes 10^{6} \mathrm{m}$	13	/#
狗川名	流 哦	流或囬慎	冬期	春期	夏期	秋期	年 間	痈 ち
千曲川 犀 川	杭 瀬 下(1) 小 市(2)	2,595.9km² 2,773.0	231.04 537.96	417.94 1,084.24	594.46 1,275.58	495.82 940.05	1,739.26 3,837.83	
	立ヶ花に対する 残流域 (3)	1,073.4	208.24	419.70	493.76	363.88	1,485.58	小市の比流出 を用いる
	(1)+(2)+(3) (4)	6,442.3	977.24	1,921.88	2,363.80	1,799.75	7,062.67	
信濃川	立 ヶ 花(5)	6,442.3	953.46	1,842.49	2,274.13	1,720.09	6,790.17	
	(4)-(5) (5)/(4)		23.78 0.98	79.39 0.96	89.67 0.96	$\begin{array}{c} 79.66 \\ 0.96 \end{array}$	272.50 0.96	
魚野川	堀之内(6)	1,419.0	786.13	2,280.33	1,077.02	901.07	5,044.55	
	小千谷に対する 残流域 (7)	1,981.7	625.90	1,590.43	1,112.07	870.30	4,198.7	小市,堀之内の平 均比流出を用いる
	(5)+(6)+(7) (8)	9,843.0	2,365.49	5,713.25	4,463.22	3,491.46	16,033.42	
信濃川	小 千 谷(9)	9,843.0	2,411.53	5,905.80	4,134.06	3,189.13	15,640.52	
	(8) (9) (9)/(8)		-46.04 1.02	-192.55 1.03	329.16 0.93	$\begin{array}{c} 302.33\\ 0.91 \end{array}$	392.9 0.98	
	全流域に対する 残流域 (10)	2,057.0	504.01	1,234.31	864.02	666.53	3,268.87	小千谷の比流 出を用いる
全 流 域 合 計	(9)+(10) (11)	11,900.0	2,915.54	7,140.11	4,998.08	3,852.66	18,909.39	
	(11)の%		15.4	37.8	26.4	20.4	100.0	

表4.5 信濃川水系季節別河川水収支総括表(1936~1965年, 30年間平均值) Table 4.5 Water balance of the Shinano River system to each season.

(2) 信濃川水系の河川水の収支

利根川水系と同様の計算を信濃川水系にも行った結果を表 4.5 に示す.残流域の流出量推定は,降水や積雪・融雪条件が流域毎に相当異なり,その精度はあまり良くないとみられる. また利水関係については調査しなかったので,表 4.5 の結果の評価は難しいが,年間でみれば 5%以内の誤差に入っていると考えられる.各支川流出量の小千谷流出量に対する寄与度は,魚野川 32%,犀川 25%,千曲川 11%,残流域 32%で,年比流出(単位×10⁶m³/km²/年)でそれぞれ 3.55,1.38,0.67,2.12 となり,魚野川流域の流出が極端に大きいことを示している.また,春期の融雪期の流出が年間の 38%近くに達している.水系全体の流出量は約 189億m³と推算された.

4.4 全国主要河川の流出比較

(1) 主要水系の年間流出量

表 4.6 に全国の主要水系の年間流出量を概略計算した結果を示す.基準流域の比流出を用いたので,水系の流域面積と基準流域との差が大きいときは,多目の推算となるとみられる.

この表より,第1位は利根川水系と木曽川水系及びこれと殆んど差のない信濃川水系が約 190億m³と並び,第2位には石狩川水系の154億m³,第3位は阿賀野川水系の142億m³, 第4位は北上川及び最上川水系の約120億m³,第5位は雄物川水系の約100億m³と並んで おり,積雪地域の河川が多い.

その他重要な河川としては淀川水系 98 億 m³,吉野川水系 70 億 m³,筑後川水系 41 億 m³ となっている.

(2) 主要河川流域の平均日流出高及び平均流量

主要河川流域の水収支計算結果から平均日流出高及び平均流量を求めた結果を図 4.2 に示 す.ここに掲げた河川流域は平均流量 50 m³/sec 以上のものである.この図から降水の多い流 域及び水資源の豊富な流域を容易に判断することができる.

4.5 降水量及び流出量の変動特性

(1) 変動係数による比較

降水量及び流出量の変動については,表4.1に18の代表河川流域について1936~1965年の30年間の変動係数(標準偏差/平均値)Co,CPとして各月及び年の値を示した。

変動係数の季節的並びに地域的な特徴をみるために、図4.3では、四季の平均値と年の値 を各地域毎2河川づつ示した。

これから変動係数の年の値は、四季の値より一般に低く、また降水の変動係数 C_p は、流出のそれ C_q よりいづれの流域でも小となっている。これに対し、四季の C_p 、 C_q は一般には夏が最大となるが秋や冬にも高くなるものがある。四季を通じて C_p 、 C_q の低い河川流域は日本

表4.6 全国主要水系年間流出量

Table4.6 Annual runoffs of main river systems in Japan.

						(1936~1965年,	30年間平均値)
地域	水系	名	流域面積	年間流出量	備		考
北海	石狩	Ш	km² 14,330 9,000	億m ³ 154 88	石狩大橋	136.4億m ³	(12,696km²)
道	天塩	Ш	5,590	79	名寄大橋	24.2 //	(1,719 ")
#	米 代	Ш	4,100	59	鷹巣	30.4 //	(2,109/)
宋	雄 物	Л	4,710	101	椿川	86.7 //	(4,035 //)
	最 上	Ш	7,040	121	高 屋	107.9 //	(6,271 ")
北	北上	Щ	10,150	123	登 米	95.4 //	(7,869 //)
	阿武隈	Ш	5,400	50	岩沼	48.8 "	(5,256))
北	阿賀野	Ш	7,710	142	馬 下	128.7 //	(6,997/))
防	信濃	Ш	11,900	189	表 4 · 5 参照		
PEE	神通	Ш	2,720	62	神通大橋	62.0 //	(2,710")
即	那 珂	Щ	3,270	38	野口	25.3 //	(2,181 ")
	利根]1[16,840	190	表4・4 参照		
東	相模	Л	1,680	22	相模ダム	13.3 //	(1,016 //)
214	富士	Ш	3,990	39	清水端	20.9 //	(2,120 //)
中	天 竜	Щ	5,090	83	鹿 島	79.1 //	(4,880 ")
立刀	矢 作	Ш	1,830	21	岩 津	16.0 //	(1,365 //)
را ت	木曽	Ш	9,100	190	(鵜沼+忠節)	131.1 "	(6,291))
沂	九頭竜	Щ	2,934	59	布施田	58.8 //	(2,934 //)
~	淀	Щ	8,240	98	枚 方	86.9 //	(7,281/)
<u> 818</u>	紀の	Ш	1,660	23	船戸	21.6 //	(1,570 //)
H44	新宮	Щ	2,360	49	相賀	47.0 //	(2,251 ")
ф	吉 井	ЛГ	2,060	24	岩 戸	19.7 //	(1,717/))
-3r.	旭	Л	1,800	21	旭川第1ダム	13.1 //	(1,140 //)
围	太田	Ш	1,690	22	玖 村	19.3 //	(1,481 //)
	江の	Ш	3,870	46	都賀	33.2 //	(2,788/))
त्व	吉 野	Л	3,750	70	池田	37.1 //	(1,980 //)
	那 賀	ЛГ	874	24	古 庄	21.4 //	(765 //)
Ŧ	仁 淀	Ш	1,560	33	伊野	30.5 //	(1,463 //)
	渡	Л	2,270	47	具 同	37.3 //	(1,808 //)
÷	筑 後	Щ	2,860	41	瀬のド	33.2 //	(2,3157)
76	球 磨	Щ	1,880	36	人 吉	21.7 //	(1,137 ")
	川内	Ш	1,600	33	斧 渕	27.5 //	(1,344 //)
州	大 淀	Ш	2,230	45	柏田	43.3 //	(2,126 //)
10110-40	五ケ瀬	Ш	1,820	35	三輪	20.1 //	(1,032 //)

Fig. 4.2 Mean depth of daily runoff and discharge to each of main river basins in Japan (river basin with the discharge more than $50 \text{ m}^3/\text{sec}$).

Fig. 4.3 Fluctuation coefficients of precipitation (C_p) and runoff (C_q) to each season and district (exampls).

海側の積雪の多い地域に多く,高い河川流域は夏期雨量の多い太平洋側の地域に多いと一般 的にはいえる.

降水と流出との対比から云えば、冬期は積雪、春期は融雪、夏期は利水と蒸発の影響があり、結局秋期でみるのが良いと思われるので、秋期について降水と流出の変動係数の比C_P/C_eを水収支計算を行った表4.1の河川流域について求め、図4.4に示した。

 C_P/C_Q の値は、流域の平均化機能、即ち流出モデルの型と対比できると期待した。即ち、降水の変動性が似通った地域の C_P/C_Q の値は、流域の保水機能が大であれば C_Q が小となるの

-219-

で大きくなるとみられる.

図 4.4 の結果はこの推定が正しかったことを示している。即ち,北海道,北陸,関東,九 州と第四紀火山性地質の多い地域は C_P/C_Qの大きな河川流域が並び,これに対して東北,中 部,近畿,中国,四国と第三紀地質や中・古生層が卓越する地域は C_P/C_Qの小さい河川が並 んでいる。

またモデル番号の並びは、保水性の大きい I 型から小さい V 型の順で C_P/C_Q の大きさと良い対応となっている。

このように秋期の変動係数比 C_P/C_Q により、各地域における流域の流出特性を相対的に評価できることが分かった。

(2) 流出の平均化に必要な貯水池容量による比較

菅原(1965)⁵⁾は水資源の変動を表現する手法として、一定期間の月降水量或は月流出量の 時系列データに対し、その平均化率に対応した必要貯水池容量の最大値を求め、平均化率一必 要貯水池規模の関係曲線から平均化の難易を評価する手法を提示した。

図 4.4 地域別の降水・流出変動係数比(秋期)と流出モデル型との関係. Fig. 4.4 Relation between ratio of fluctuation coefficients (C_P/C_o) in autumn

19.4.4 Relation between ratio of fluctuation coefficients (C_P/C_Q) in autum and type of runoff model in each district.

図4.5 流量平均化率と必要貯水容量(代表18河川)

Fig. 4.5 Relation between averaged degree of runoff and its necessary maximum reservoir capacity during 30 years from 1936 to 1965 to each of 18 representative river basins.

図4.5 流量平均化率と必要貯水容量(代表18河川).

Fig. 4.5 Relation between averaged degree of runoff and its necessary maximum reservoir capacity during 30 years from 1936 to 1965 to each of 18 representative river basins.

図4.5 流量平均化率と必要貯水容量(代表18河川).

Fig. 4.5 Relation between averaged degree of runoff and its necessary maximum reservoir capacity during 30 years from 1936 to 1965 to each of 18 representative river basins.

国立防災科学技術センター研究報告 第35号 1985年11月

図4.5 流量平均化率と必要貯水容量(代表18河川).

Fig. 4.5 Relation between averaged degree of runoff and its necessary maximum reservoir capacity during 30 years from 1936 to 1965 to each of 18 representative river basins.

Fig. 4.5 Relation between averaged degree of runoff and its necessary maximum reservoir capacity during 30 years from 1936 to 1965 to each of 18 representative river basins.

図4.6 主要河川の50%平均化日流出高と 必要貯水池容量との関係.

Fig. 4.6 Relation between 50% averaged runoff and its necessary maximum reservior capacity during 30 years from 1936 to 1965 to each of main river basins in Japan.

国立防災科学技術センター研究報告 第35号 1985年11月

この手法は水資源開発の実際的問題にも直接的に適用できるという点からみても優れた手 法であり、水資源の変動性が実用的な観点から評価できる利点がある。

図 4.5(1)~(18)は,表 4.2(1)~(18)に対応した代表河川について,上記手法を適用して 30 年間の時系列月流出量データに基づく,流出平均化率とその流出量に対する必要最大貯水池容量の関係を示したものである。

表4.7 は平均化率30%~80%に対する必要貯水池容量の値を代表河川流域について比較したものである。この表から平均化の容易な河川流域は、石狩川・石狩大橋、信濃川・小千谷、狩野川・徳倉、淀川・枚方、利根川・栗橋、北上川・登米、阿賀野川・馬下で淀川を除けば東日本の河川流域が殆んどである。一方、平均化の困難な河川流域は、吉井川・岩戸、 渡川・具同、新宮川・相賀、吉野川・池田、大淀川・柏田等があり、西日本の太平洋側の地域の河川流域が殆んどである。

平均化の難易と流出モデル型との関係をみると、保水性の大きい I・II 型が容易で、小さ いIV・V型が困難であると云うことは、同一気候区に限られ、一般的には云えないことが表 4.7 から明らかである.また、平均化率が高まるにつれて、必要貯水池容量の増加率が急激に 大となるものと比較的緩やかに増加するものがあり、これも平均化の難易の評価に入れる必 要がある.

水資源の量的側面も入れて平均化の難易をみるために、平均化率 50%の場合、平均化された日流出高と必要貯水池容量との関係を図 4.6 に示す。平均化率 50%では、狩野川・徳倉、 阿賀野川・馬下,信濃川・小千谷、白川・代継橋、淀川・枚方、矢作川・岩津、旭川・旭川 第1ダム、石狩川・石狩大橋等が有利とみられる。

関東の河川は50%の平均化は比較的容易であるが水量は多くはない.これに対し,西日本の河川は50%の平均化は可成り困難となるが,水量は豊富に得られるとみられる.中国地方の河川は旭川を除いて50%の平均化は可成り困難であり,得られる水量も少ないことが分かる.
日本の河川流域の月単位水収支と水文特性(第2報) —— 植原・佐藤

表4.7 代表河川流域の流出量平均化率と必要貯水池容量

Table 4.7	Averaged	runoff	to	each	degree	and	its	necessary	maximum	reservoir
	capacity c									

								単位 mn
河川初	平均化率	30%	40%	50%	60%	70%	80%	流出モデル型
1. 3	石狩川・石狩大橋	0	1	28	72	161	424	201
1.5	十勝川・帯広	0	20	58	99	196	326	202
2.4	最上川•高屋	20	55	118	189	280	492	501
2.6	北上川・登米	0	20	40	70	139	385	305
3.1	阿賀野川・馬下	5	20	36	93	180	347	304
3.6	信濃川・小千谷	0	1	28	73	159	280	105
4.9	利根川・栗橋	0	12	44	81	169	387	202
4.15	富士川・清水端	0	14	48	95	198	453	103
5.1	狩野川•徳倉	0	1	35	102	265	755	105
5.8	木曽川・鵜沼	31	78	151	237	413	927	203
6.5	淀川・枚方	0	5	25	88	179	382	203
6.9	新宮川・相賀	63	130	217	335	646	1,151	301
7.1	吉井川・岩戸	113	222	410	589	780	1,011	501
7.9	江の川・都賀	42	88	165	266	408	597	308
8.1	吉野川・池田	55	128	206	298	491	787	405
8.5	渡川・具同	119	214	317	420	635	979	407
9.2	筑後川・瀬の下	7	45	126	271	499	726	202
9.9	大淀川・柏田	11	88	209	357	521	932	102

5. あとがき

第1報,第2報を通じて,月単位水収支モデル作成の手法を確立し,それに基づき,全国 の主要河川について 30 年間の水収支を計算し分析・評価を行った。この結果,我国の諸河川 の水収支の特徴や水資源賦存量及びその変動をマクロ的に評価し得たと共に,水文学的な諸 特性についても明確に比較し,また解明することができた。

1965年,国連コネスコを中心とする国際水文学10年計画が発足した時,世界,地域,各国の各レベルにおける水収支を明確にすることが最大の目標であった.本報告は,この計画に対して,我国の水収支の明確化に対する1つの解答であると思っている.

水文学における課題は多いが、マクロ的な正確なアプローチを柱として、更に詳細な事象 を解明して行くことが大切と考えられる.

6. 謝辞

第1報の謝辞でも述べたように、本研究の出発点は、資源調査報告第34号水資源の変動様 相に関する調査報告(1965)及び第47号水資源の循環機構に関する調査報告(1969)であり、 また1965年から開始された国際水文学10年計画の重要課題であった水収支に関連して企図 されたもので、菅原正巳前所長の御教示に負うところが多く、ここに改めて深甚の謝意を表 します.また第2報中の3節で使用したランドサットフィルムの一部は、資源調査所の資料 課から貸与して頂きました。ランドサット写真画像の作成には、千葉大学工学部天然色工学 研究施設の三輪卓司教授の御協力を賜り、50万分の1及び100万分の1の正確で良質な画像 を多数作成して頂きました。一方、中村勉新庄支所長には、積雪・融雪等に関して多くの助 言と参考文献を送付して頂きました。また、大八木規夫流動研究官には、流域の地質区分に ついて助言を頂きました。これらの御協力に対しここに記して感謝の意を表します。

参考文献

- Bowley C. J. and Barnes J. C. (1979): Satellite Snow Mapping Techniques with Emphasis on the Use of Landsat, American Water Resources Association, Satellite Hydrology, 158 -164.
- Hannaford J. F. and Brown A. J. (1979): Application of Snow Covered Area to Runoff Forecasting in the Sierra Nevada, California. A W R A, Satellite Hydrology, 165–172.
- 3) 小島賢治,本山秀明,山田芳則(1983):気温等単純な気象要素による融雪予測について,低温 科学物理篇第 42 輯, 101-110.
- 4) 虫明功臣,高橋 裕,安藤義久(1981):日本の山地河川の流況に及ぼす流域の地質の効果,土 木学会論文報告集第 309 号,51-62.
- 5) 資源調査会報告第34号水資源の変動様相に関する調査報告(1965):科学技術庁資源調査会.
- 6) 資源調査会報告第47号水資源の循環機構に関する調査報告(1969):科学技術庁資源調査会.
- 7) 資源局資料第57号利根川流域における水収支(1964):科学技術庁資源局,7-10,59-64.
- Shafer B. A., Leaf C. F. and Marron J. K. (1979): Landsat Derived Snow Cover As an Input Variable for Snow Melt Runoff Forecasting in South Central Colorado, AWRA, Satellite Hydrology, 218–224.
- 9) 武田要 (1980): LANDSAT 雪線情報と積算暖度法による流域,地域最大積雪量算定に関する 研究.
- 10) 植原茂次・佐藤照子(1983):日本の河川流域の月単位水収支と水文特性(第1報),国立防災 科学技術センター研究報告第 30 号,25-64.

(1985年6月10日 原稿受理)